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Abstract—Most GPU-based graph systems cannot handle
large-scale graphs that do not fit in the GPU memory. The
ever-increasing graph size demands a scale-up graph system,
which can run on a single GPU with optimized memory access
efficiency and well-controlled data transfer overhead. However,
existing systems either incur redundant data transfers or fail to
use shared memory. In this paper we present Graphie, a system to
efficiently traverse large-scale graphs on a single GPU. Graphie
stores the vertex attribute data in the GPU memory and streams
edge data asynchronously to the GPU for processing. Graphie’s
high performance relies on two renaming algorithms. The first
algorithm renames the vertices so that the source vertices can
be easily loaded to the shared memory to reduce global memory
accesses. The second algorithm inserts virtual vertices into the
vertex set to remame real vertices, which enables the use of
a small boolean array to track active partitions. The boolean
array also resides in shared memory and can be updated in
constant time. The renaming algorithms do not introduce any
extra overhead in the GPU memory or graph storage on disk.
Graphie’s runtime overlaps data transfer with kernel execution
and reuses transferred data in the GPU memory. The evaluation
of Graphie on 7 real-world graphs with up to 1.8 billion edges
demonstrates substantial speedups over X-Stream, a state-of-the-
art edge-centric graph processing framework on the CPU, and
GraphReduce, an out-of-memory graph processing systems on
GPUs.

Index Terms—Graph Traversal; GPUs; Out-Of-Memory Pro-
cessing; Data Transformation

I. INTRODUCTION

Graphs are used in various domains, such as machine
learning, social networking, and bioinformatics, thanks to
their flexible modeling capability. With ever-increasing graph
sizes, it becomes critical to improve the performance of graph
processing, because a Breadth-First Search (BFS) run on a
real-world graph in a high-end system may take more than 10
minutes [1]. Scaling up the performance of graph processing
is however challenging due to the well-known random access
problem[1]-[3] and dramatic frontier change across phases of
the same application and across inputs.

To accelerate large-scale graph analytics, researchers have
proposed many scale-out and scale-up graph processing sys-
tems on CPUs [4]-[6]. PowerGraph [7] considers the power-
law distribution of vertex degrees and implements a vertex-cut
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partitioning method to reduce inter-machine communication
and improve load balance. PowerLyra [8] further improves
the performance by selectively applying vertex-cut and edge-
cut approaches that match the characteristics of different parts
of the graph. Although those distributed graph systems pro-
vide impressive performance, users may still prefer a single-
machine based graph system, which is easy to manage and
understand [9]. GraphChi [9] is the first graph system that can
process large-scale graphs with decent performance on a single
machine. X-Stream [1] proposes the edge-centric processing
model which sequentializes accesses to edge data. Galois [10]
implements a high-performance data-centric infrastructure to
support existing graph processing domain-specific languages.

With the increasing popularity of GPU computing, scaling
up graph processing on a single GPU also attracted substantial
attention [11]-[14]. CuSha [2] implements G-Shard, a similar
data structure as used in GraphChi, which optimizes memory
coalescing. Gunrock [15] provides a set of high-level primi-
tives, which demonstrate an order of magnitude speedup over
PowerGraph. Unfortunately, neither CuSha nor Gunrock can
process graphs that do not fit in the GPU memory. However,
many real-world graphs have billions of edges, and the size of
the edge data alone (e.g., 11 GB for the Twitter graph used in
this work) can be easily larger than the limited GPU memory
size (e.g., 6GB for the Nvidia Titan GPU).

In this paper, we focus on large-scale graph traversals, such
as BFS and Connected Components (CC), which most existing
GPU-based graph systems cannot handle. We face three major
challenges. First, a traversal touches a large amount of data but
performs little computation. For example, prior work shows
that the ratio between data transfer time and kernel execution
time on real-world graphs can be up to 2 [16], indicating that
data transfer may dominate the execution. Second, the random
access problem leads to poor GPU memory efficiency, and
meanwhile makes it hard to leverage shared memory. Third,
the frontier (the set of active vertices) of a graph traversal
changes throughout the execution depending on the topology
of the graph.

GraphReduce [17] and GTS [16] are two existing GPU-
based graph systems that claim to be able to process out-
of-memory graphs, which do not fit into the GPU memory.
But neither of them well addresses all three challenges. For



example, GraphReduce heavily optimizes for GPU memory
access efficiency. It uses the Compressed Sparse Column
(CSC) format for the gather phase and Compressed Sparse
Row (CSR) format for the scatter phase. Transferring both
CSC and CSR data contains substantial redundancy, which
worsens the GPU memory pressure and lengthens data transfer
time. GTS can adapt to the dynamic frontiers and avoid
redundant data transfers. In addition, its slotted page format
helps improve load balance and memory coalescing. But GTS
fails to exploit shared memory, and its graph representation is
rarely seen in the graph processing field.

In this paper, we present Graphie, the first GPU-based
graph system that addresses all the three challenges of large-
scale graph traversal. It overcomes the GPU memory capacity
limitation and can efficiently process graphs with billions of
edges. Graphie uses one of the most popular graph formats,
edge list, and divides it into partitions. It keeps the vertex
attribute data in the GPU memory, and streams the edge
partitions to the GPU. Unlike current systems (e.g., GraphRe-
duce), Graphie does not introduce any redundancy besides the
edge data. Its optimized performance comes from one key
idea: vertex renaming. The renaming has two rounds powered
by two algorithms. Once the first-round renaming is done,
Graphie allows efficient use of shared memory to accelerate
vertex attribute data accesses, as well as improving memory
coalescing. After the second-round renaming, Graphie can use
a small boolean array to keep track of the partitions that
contain active vertices as source vertices and hence should
be transferred to the GPU. Graphie stores the boolean array in
shared memory, and updates its elements in constant time,
which is infeasible without renaming. Graphie hides data
transfer overhead through asynchronous streaming and avoids
redundant data transfers by reusing edge partitions already
resident in the GPU memory. These techniques combined to-
gether make Graphie substantially outperform X-Stream (up to
98X performance improvement), a state-of-the-art edge-centric
graph processing framework on the CPU. We cannot directly
compare the performance with GraphReduce [17], which is a
similar system but is not released to public. However, although
our used GPU is just slightly more powerful than the GPU
used in the GraphReduce work (details in Section VI), on
the same set of non-trivial graphs used by GraphReduce, the
results of Graphie demonstrate up to 179X speedup over the
results reported for GraphReduce.

We make the following contributions in this paper:

e We propose two renaming algorithms to improve large-
scale graph traversal’s performance on GPUs. The first
algorithm enables efficient use of shared memory for
accessing vertex attribute data. The second enables the
use of a small boolean array in shared memory to track
the active partitions that should be transferred to the GPU.
Neither algorithm introduces any space overhead in the
GPU memory or in the graph storage on disk.

o We propose an asynchronous edge streaming runtime,
which hides data transfer overhead and efficiently reuses
transferred data across super steps.

for v in vertex_partition
if v.active == true
for e in v.in_edges
process_in_edge(e)
for e in v.out_edges
process_out_edge(e)

for e in edge_partition
if e.src.active == true
//read e.src
send_update_over_edge(e)
//write e.dst
apply_update(e.dst)

(a) Vertex-centric (b) Edge-centric

Fig. 1: Vertex-centric vs. edge-centric graph processing.

o We integrate the renaming algorithms and the runtime
into a GPU-based graph system named Graphie, which
supports expressive graph algorithm programming and
the traversal of graphs with billions of edges.

e We evaluate Graphie on 7 real-world and synthetic
graphs used in various studies. The results show that
Graphie produces up to 98X speedup over X-Stream.
When processing small graphs, Graphie’s performance
is comparable to CuSha, a high-performance GPU-based
system to process in-memory graphs.

II. BACKGROUND AND MOTIVATION

This section first provides the background of the vertex-
centric and edge-centric graph processing models, and explains
the reason for Graphie to choose the edge-centric model.
It then presents the high-level framework to process out-of-
memory graphs on GPUs. It motivates the work by describing
the performance issues an optimizing graph system must
address.

A. Graph processing models and data organization

There exist many models for single-machine large-scale
graph processing, such as vertex-centric [9], edge-centric [1],
data-centric [10], path-centric [18], and matrix-based [19]
models. We limit the discussion to the vertex-centric model,
represented by GraphChi [9], and the edge-centric model,
represented by X-Stream [1], because they are extensively
studied and implemented in many systems. Figure 1 (a) shows
the high-level workflow of the vertex-centric model, which
divides the vertices into vertex partitions. During the process-
ing of each vertex partition, the accesses to the vertices have
good spatial locality, while the accesses to the in_edge and
out_edge are random. Alternatively, the edge-centric model,
shown in Figure 1 (b), divides the edges into partitions and
enables sequential accesses to edges. However, the accesses
to vertices are random as a downside. Because the number of
edges is typically much larger than the number of vertices,
the edge-centric model, by sequentializing the accesses to
edges, outperforms its counterpart as demonstrated by multiple
systems [1], [16], [20].

B. Out-of-memory graph traversals on GPUs

GPUs have been successfully used for in-memory graph
traversals [12], [15], [21]. The graph data only need to be
copied at the beginning of the processing, whose overhead is
amortized to the many phases of traversals. Once the whole
graph data are readily available in the GPU memory, systems



TABLE I: Datasets Used in The Experiments

Name Vertices Edges
cagel5[22] 5.IM 99.1M
kron_g500_logn21[23] 2.1M 182.1M
nlpkkt160[24] 8.3M 221.1M
orkut[25] 3.1IM 117.2M
uk-2002[26] 18.5M 298.1M
friendster[25] 124.8M  1,806.1M
twitter[27] 61.6M  1,468.4M

such as CuSha [2] or GunRock [15], can provide up to two
orders of magnitude performance improvement over state-
of-the-art CPU-based graph systems. However, GPUs have
limited main memory. A modern GPU, such as Nvidia Titan
Z, is only equipped with 6GB memory, while many real-world
graphs have billions of edges and are hence too large to fit in
the GPU memory. Table I shows 7 graphs used in this paper,
which are used by other studies [1], [16], [17]. Suppose an
edge needs 8 bytes, 4 bytes for the source vertex ID and
4 bytes of the destination vertex ID. The graph friendster’s
topology data (i.e., edges) alone need 14GB memory space.
Since the execution also needs to store the vertex attributes and
possibly edge weights, the actual memory requirement can be
significantly larger.

Algorithm 1 shows the basic workflow to process
out-of-memory graphs on a GPU. The function
ProcessGraphOnGPU runs on the CPU and takes a
graph G stored in the CPU memory as the input. It initializes
the vertex attribute array VA_C'PU and copies it to the GPU
memory. The assumption is that the GPU memory is large
enough to hold the vertex attribute array, which is true for
most real-world graphs [2], [16], [17]. The graph’s edge data
are divided into partitions (i.e., G.edge_partitions). The size
of the partitions is chosen such that a partition can reside
in the GPU memory together with the vertex attribute array
VA_GPU. Each iteration of the while loop represents a
super step, whose finishing point implicitly indicates a global
synchronization. The loop body transfers the edge partitions
one by one and invokes a kernel to process the transferred
edge partitions to update the attribute array. Note that the
edge partitions are read-only and can be safely overwritten
after being processed. The kernel function PartitionKernel
launches as many threads as the number of edges in the
partition. One thread corresponds to one edge and calls
the update device function if the edge’s source vertex is
active. The update function may update the attribute data
of the destination vertex. If an update happens, we say the
destination vertex is activated. Both GTS and GraphReduce
implement a similar workflow.

a) Example: Figure 2 shows an example graph and its
edge partitions. The graph has 8 vertices and 16 edges. Each
edge partition has 4 edges. We do not assume the edges are
sorted, because the input graphs may not have been pre-
processed. Suppose vertex 5 is the root node for a BFS
traversal. When the execution starts, it is the only active
vertex. We further suppose each kernel invocation launches

Algorithm 1: Basic workflow to process out-of-
memory graphs on the GPU.

1 //G is the input Graph

2 Function ProcessGraphOnGPU(G)

3 VA_CPU + init_vertex_attr(Q)

while not finished do
trans_data(VA_GPU,VA_CPU,CPUToGPU)
foreach EP_CPU in G.edge_partitions do

®w N & v A

PartitionKernel <<< ... >>>
(EP_GPU,VA_GPU,...)

9 trans_data(VA_CPU,VA_GPU,GPUToCPU)
10 return VA_CPU

11 Function PartitionKernel(edge_partition)
12 tid < get_thread_id()

13 e + edge_partition[tid]

14 if e.src is active then

15 | Up(V Ale.dst], V Ale.srd])

one single thread block of 4 threads to process the transferred
edge partition. When processing the third edge partition, the
first thread would activate vertex 1. The GPU can successfully
process this graph if the memory is large enough to hold the
vertex attribute data (8 variables) and one edge partition (4
edges). In the remainder of the paper, whenever this example
is used, we have the same assumption about the thread block
size and the partition size. We also assume the thread block
can only load 4 vertices to the shared memory, which can be
viewed as software-controlled cache.

Algorithm 1 shows that to improve the performance we
should reduce the data transfer overhead (line 7) and/or
improve the kernel’s performance (line 8). We next present the
challenges of achieving these goals using the example shown
in Figure 2.

b) Issue 1, dynamic frontiers: Graph traversals typically
have complicated behaviors depending on the algorithm and
graph topology. Specifically, the number of active vertices (i.e.,
the frontier) and their distribution in the vertex set may vary
dramatically across super steps. For example, BFS starts with
one active vertex (i.e., the root vertex) and in each super step
activates a new set of vertices which are just discovered in
this step. Connected component, on the other hand, has all
vertices as active vertices at the beginning of the execution.
The number of active vertices decreases towards the end of
the execution. In the context of graph traversals on the GPU,
the transfer of an edge partition is redundant if none of its
edges are out-edges of active vertices. For instance, Figure 2
shows that in the second super step of a BFS run with vertex
6 as the root, the second edge partition contains all the out-
edges of the activated vertex (i.e., vertex 1), and hence is the
only one that should be transferred to the GPU for optimized
performance.

Current graph systems that support out-of-memory graph
processing on GPUs solve this problem by keeping track of

trans_data(EP_GPU, EP_CPU,CPUToGPU)



src:[0oo06[1176]5267]7086 7]

dst: [1 23 2J4020]1336]4645]

Fig. 2: An example graph and its partitioned edge list.

the active vertices via a boolean array. The size of the array
is the number of vertices in the input graph, because any
vertex may be active for the next super step. This approach
has three drawbacks. First, despite contributing nothing to the
real computation, this meta array stays in the GPU memory
and incurs non-trivial space overhead (e.g., 124.8MB for
friendster). Second, the array needs to be copied back to the
CPU at the end of each super step, causing time overhead on
the critical path. Third, the array is too large to fit in GPU’s
shared memory. As such, every update causes one extra GPU
main memory access to update the corresponding boolean
variable.

c) Issue 2, memory access inefficiency: GPU kernel’s
performance highly relies on memory access efficiency. There
are two major ways to improve the efficiency. First, if the
threads running on the same SIMD unit access nearby memory
locations, the memory accesses may be coalesced to reduce
the number of memory transactions. Second, if the threads
of the same thread block repeatedly access the same memory
location, the data element at that location should be fetched to
shared memory for those threads to quickly access. A naive
implementation of Algorithm 1 fails to exploit either memory
coalescing or shared memory. Random vertex accesses, which
occur during processing each partition, leads to excessive
uncoalesced memory transactions. The randomness also com-
plicates the use of shared memory, which needs heavyweight
pre-processing to figure out the set of accessed vertices, easily
offsetting the benefit.

In the next two sections, we propose several techniques
to address these two issues, followed by the presentation of
the Graphie framework that integrates these techniques for
efficient large-scale graph traversal.

III. OPTIMIZING KERNEL EXECUTION THROUGH VERTEX
RENAMING

This section discusses the inadequacy of existing solutions
to the performance issues described in last section. It presents
two vertex renaming algorithms to improve memory access
efficiency and to efficiently determine the active partitions that
should be transferred. The section explains why the renaming
process does not introduce any space overhead in the GPU
memory.

A. Improving GPU memory access efficiency

A naive solution to improving the memory access efficiency
problem is to sort the edges by source vertex ID. Figure 3 (a)
shows the sorted edge list of the example in Figure 2. We note
that the sorting improves the performance of the accesses to
the source vertices because of enhanced locality but with the
accesses to the destination vertices remaining random.

It may seem after the sorting, the distinct source vertices
can be loaded into the shared memory to reduce main memory
accesses. However, although the number of distinct vertices is
up to the number of edges in the partition, the gap between
the first source vertex ID and the last source vertex ID can
be larger than the number of vertices that can be loaded to
shared memory. The reason is that many vertices whose IDs
are in between do not have out-going edges. As Figure 3 (a)
shows, the second partition has three distinct vertices, but the
gap is 4. Recall that we assume the shared memory used by
one thread block can hold up to 4 vertices, so we cannot load
5 vertices (2—6) to the shared memory. Therefore, even with
the sorted edges, it still requires a non-trivial pre-processing
phase to figure out the distinct source vertices (i.e., vertices 1,
2 and 5 in the example).

To address these problems, we propose a renaming tech-
nique which not only improves memory coalescing but also
makes using shared memory straightforward. The renaming
process happens after the edges are sorted by source vertex.
Algorithm 2 shows how the technique works through two
functions: RenameForMemory to rename the vertices and
PartitionKernelV2 to demonstrate the convenient use of
shared memory. The idea of RenameFor Memory is to pack
the vertices into contiguous values where the vertices with
nonzero out degree occupy the lower indices. It first scans
the edges to compute the out-going degree for each vertex
(line 4). It then uses an array new_to_old to compute the
new IDs for the vertices. After the first for loop, the vertex
of the ID given by new_to_old][i] should have the new ID .
To quickly access the new ID given the old ID, we use an
array old_to_new, whose ith element is the new ID of the ¢th
vertex in the original graph (lines 10). Finally, the out-edges
of each vertex are sorted by destination (line 13-15), which
improves the spatial locality of accessing destination vertices,
thus improving memory coalescing.

After the edges are renamed and reordered,
PartitionKernelV2 shows the convenient use of shared
memory in the kernel. Since the IDs of the source vertices of
the edges are contiguous, we easily calculate the number of
distinct source vertices in each partition based on the source
vertex IDs of the first edge and the last edge (line 21). We
only load the attribute variables of the distinct source vertices
to shared memory (lines 24 and 25) followed by a thread
block-level barrier to avoid data races. The update function
Up accesses the attribute variables of the source vertices in
the shared memory (lines 28), which may significantly reduce
the number of global memory accesses because those source
vertices may have many out-going edges.



(first-round renaming)

src: [0oo0o]1125[6666[777 7]

src: [0 00 of1 12344 44]555 5]

src: [0 000[3345[6666[99909]

dst: [1 6 2 3[o 4 3 1J1 3 4 0[2 6 4 5]

dst: [1 246J]0 7 61026 7 23 4 7]

dst: [34 6 10]3 1110 3J0410 11]4 56 11]

(sorted edges by source)

(a)

(b)

(c)

Fig. 3: Illustration of the renaming process.

Once the processing on the GPU finishes, we transfer the
vertex attribute array (V A_GPU) back to the CPU to store
in the array VA_CPU. However, because the vertices are
renamed, we need to map the updated attribute data to the
corresponding vertices. The problem can be easily solved,
because we maintain the mapping in the array new_to_old
obtained in RenameF or Memory. The ith attribute variable
V A_CPUJi] should belong to the vertex of ID new_to_old[i]
in the original graph.

a) Example: Figure 3 (b) shows the renamed and re-
ordered graph data of the example graph after being processed
by Algorithm 2 (first-round renaming). Vertex 3 and 4 in
the original graph have new IDs 6 and 7 (i.e., the largest
IDs), respectively, because they do not have out-going edges.
Correspondingly, the IDs of vertex 5-7 in the original graph
are reduced by 2. Observe that the source vertices of the
edges are contiguous and that the out-going edges of the
same source vertex are sorted by destination vertex ID. Unlike
Figure 3 (a), we can now easily compute the number of distinct
source vertices of the second partition thanks to the source ID
contiguity.

b) Analysis: RenameForMemory runs online or of-
fline on the CPU to pre-process the edge data. It requires the
edges to be sorted by source ID, but most systems demand
a similar sorting process (e.g., GraphChi and GTS). The
rationale of the pre-processing is that it is done just once
and the cost can be amortized over many runs with different
inputs such as different roots for BFS or with different
algorithms on the same graph. In RenameForMemory,
each state before the final sorting (line 13) takes linear
time in terms of the number of vertices or the number of
edges. The sorting stage takes O(N x Alog(A)), where A is
the maximum outdegree. Therefore, RenameF or Memory’s
worst complexity is O(M + N x Alog(A)), where M is the
number of edges. If we assume A to be the average degree
multiplied by a constant, the complexity can be estimated
as O(M + N x (M/N) x log(M/N)) = O(Mlog(M/N)),
which is less than sorting the edge list, which takes (i.e.,
O(Mlog(M))). Moreover, Algorithm 2 does not incur any
extra space overhead in the GPU or extra storage overhead in
the disk.

Algorithm 2: Renaming vertices to improve memory
access efficiency.

1 //G is the input graph
2 /N is the number of vertices
3 Function RenameForMemory(G)

4

5
6
7
8

9
10

11
12

13
14
15

out_degrees < ComputeOutDegrees(Q)
new_to_old + {0,1,..., N — 1}
foreach id in new_to_old do
if out_degrees[id] = 0 then
L L move id to the end of new_to_old

for i< 0to N —1do
L old_to_new[new_to_old[i]] + i
foreach e in G.edges do
e.src + old_to_newle.src];
e.dst < old_to_newle.dst];
foreach v in G.vertices do
if out_degrees|v.id] # 0 then
L Sort v’s outgoing edges by destination

16 //BS is the thread block size
17 //SV A is an array in the shared memory
18 Function PartitionKernelV2(EP, V A)

19
20
21

22
23

24
25

26
27
28

tid < get_thread_id()
start_vertex < EP[0].src
num_distinct_srcs <
EP[BS — 1].src — EP|0].src
e + edge_partition[tid]
/MLoad attributes of distinct vertices to shared
memory
if tid < num_distinct_srcs then
L SV Altid] < V A[start_vertex + tid]

Barrier() //synchronize threads to avoid data race
if e.src is active then
L Up(V Ale.dst], SV Ale.src — start_vertex])




Algorithm 3: Renaming vertices to efficiently activate
partitions.

1
2
3
4

5
6
7

10
11

12

13
14
15

16

17
18

19
20

21

22

23
24
25

26
27
28

29
30

31
32

33
34

35
36
37

38

/IG is the graph produced by Algorithm 2

//N is the number of vertices

/I P is the number of partitions

/Imum_virtual_vertices is an array of size P
initialized to all 0’s

/Imew_ids is initialized as {0,1,...., N — 1}

Function RenameForActivePartitions(GG)

/ISZ sotres the number of distinct source vertices
for all partitions

traverse partitions to compute SZ

compute SZ_max //the maximum number in SZ

for i< 0to P—1do
L num_virtual_vertices < SZ_max — SZ]i]

pre_sum <—
InclusiveScan(num_virtual_vertices)
append 0 at the front of pre_sum

for i<~ 0to P—1do
foreach v € EPJi].distinct_source_vertices
do

new_ids[v.ID] +
L new_ids[v.1D] + pre_sumli]

foreach vertex v without out-going edges do
new_ids[v.ID] <
new_ids[v.ID] + pre_sum/[P]
foreach ¢ in G.edges do
e.src + new_ids[e.src];
e.dst < new_idsle.dst];

/lactivated is an array of size P in the shared memory
initialized to all False

/IOV is the number of vertices that have out-going
edges Function PartitionKernelV3(EP, V A)

tid < get_thread_id()

start_vertex <— EP|0].src

num_distinct_srcs <
EP[BS — 1].src — EP|0].src

e + edge_partition|[tid)]

if e.src < OV then
L src_of fset < pre_sumle.src/SZ_max)]

if e.dst < OV then
L dst_of fset < pre_sumle.dst/SZ_mazx]

else
L dst_of fset + pre_sum[P]

if tid < num_distinct_srcs then
SV Altid) =
V A[start_vertex + tid — src_of f set)]
Barrier() //synchronize threads to avoid data race
if e.src is active then
if Up(V Ale.dst — dst_of fset], SV Ale.src —
start_vertex]) and e.dst < OV then
L activatedle.dst/SZ_max] < True

B. Efficiently Activating Partitions

Recall that graph traversals have dynamic frontiers, and only
the edge partitions that contain one or more vertices in the
dynamic frontier should be transferred to the GPU to save
data transfer time. As discussed in Section II-B, both GTS
and GraphReduce uses an array of size N (i.e., the number
of vertices) to record which vertices are in the frontier for the
next super step, which burdens the GPU memory and increases
data transfer cost. Worse, the array is too large to benefit from
shared memory. To address this problem, the ideal solution is
to have a small boolean array (also called a tag array), of size
P the number of partitions, on the GPU to track the partitions
that contain active vertices as source vertices. For example, for
the graph shown in Figure 3 (b), we only need a boolean array
of size 4 (instead of 16 in existing systems). If only vertex 2 is
activated in the current super step, the boolean array should be
{False,True, False, False}. After processing this array, the
CPU knows that only partition 2 should be transferred to the
GPU in the next super step, as it contains all the out-going
edges of the vertex 2. However, computing which partition
contains the activated vertex involves searching and needs
O(logP) time. Since the overhead occurs every time a vertex
is updated, this approach may perform worse than the existing
approach of maintaining a large boolean array.

We propose a technique to further rename the vertices
based on the renamed graph produced by Algorithm 2. Al-
gorithm 3 shows the process of reducing the cost of figuring
out the activated partition to one single division operation.
The essential idea is to insert virtual vertices, which do not
need storage, to the source vertex sets of partitions, so that
the IDs of distinct source vertices of each partition fall into
ranges of the same size. Lines 8 and 9 calculate for each
partition the difference between its number of distinct source
vertices and the maximum number of distinct vertices across
partitions. Num_virtual_vertices of size P maintains the
numbers of virtual vertices that should be inserted. Pre_sum,
computed via an inclusive scan on num_virtual_vertices,
stores the total number of inserted virtual vertices before each
edge partition. With 0 appended at the front, pre_sum/[P]
is now the total number of inserted virtual vertices. The
vertex IDs of the source vertices of each partition ¢ should
be increased by pre_sumli] to reflect the number of inserted
virtual vertices before them. Similarly, the IDs of the vertices
without out-going edges should be increased by pre_sum|[P).
The renaming of the IDs in edge data is the same as in
Algorithm 2.

We next show how the renaming enables constant time
update of the boolean array activated in the new kernel func-
tion PartitionKernelV 3. Recall that the size of activated
is equal to P, the number of partitions, and hence the array
is usually small enough to be stored in shared memory. One
key difference from PartitionKernelV2 in Algorithm 2 is
that when the attribute array is accessed, the index should be
decreased by an offset (lines 34 and 37). The offset equals
the number of inserted virtual vertices before the partition



that contains the vertex as a source vertex. Lastly, if the
update function returns true, meaning that the destination
vertex (e.dst) is updated, and the updated vertex has out-going
edges, the partition that contains it as a source vertex should
be activated. The ID of that partition can be easily calculated
as e.dst/SZ_MAX, a tremendous improvement over naive
searching.

a) Example: Figure 3 (c) shows the renamed graph by
Algorithm 3 based on Figure 3 (b). Partition 2 has 3 distinct
source vertices, the largest among all the partitions. All the
other partitions only have 1 distinct source vertex. Hence,
we insert 2 virtual vertices in each of the source vertex set
of partition 1, 3, and 4. Suppose a thread processes edge
(5,3) and needs to update vertex 3. It writes vertex 3’s new
value to VA[3 — 2] (i.e., VA[1]). The ID of the partition that
contains 3 is easily computed as 3/3 = 1. The boolean variable
activated[l] is then assigned to True.

b) Analysis: We stress that although Algorithm 3 may
insert a large number of virtual vertices, it, like Algorithm 2,
does not introduce extra space overhead in the GPU memory,
because we only need N elements in the attribute array. All the
steps of RenameF orActivePartitions, including the nested
loop (lines 14—-16), can be implemented in linear time. Thus,
the time complexity is O(M).

IV. MINIMIZING DATA TRANSFER OVERHEAD THROUGH
ASYNCHRONOUS EDGE STREAMING

This section presents the techniques used by Graphie to
reduce data transfer overhead through asynchronous edge
streaming.

Graph traversals are memory-intensive with very low arith-
metic intensity. As such, the data transfer of a partition may
take longer than its processing on the GPU. Fortunately,
modern GPUs support parallel command queues (e.g. Hyper-
Q in Nvidia GPUs [28]), which allow overlapping between
kernel execution and data transfer. Graphie leverages this
capability to hide edge partition transfer overhead as shown
in Figure 4. After initializing the vertex attribute array (V' A),
Graphie divides the remaining GPU memory into K partition
buffers, where K is the number of streams, unless the user
explicitly specifies the partition size. Graphie takes turns to
use the streams to transfer the edge partitions to the GPU.
In each stream, a kernel invocation command always follows
a data transfer command to process the transferred partition.
The commands sent to the same command queue are executed

GPU memory
Fig. 4: Asynchronous edge streaming through parallel com-

mand queues. DT, CQ, and PB represent data transfer,
command queue and partition buffer, respectively.

sequentially. Current Nvidia GPUs support up to 32 command
queues. If more streams are used, some streams will be
serialized to use the same command queue. Hence, Graphie
uses 32 streams by default unless specified otherwise.

Section III-B described the renaming technique to efficiently
identify the activated partitions to process in the next super
step. Graphie’s runtime makes sure that only activated parti-
tions are transferred. While this optimization greatly reduces
the data transfer overhead when the number of activated
partitions is small, redundant transfer may still occur if the
activated partition is already in the GPU memory. Suppose the
average number of activated partitions in each super step is A.
On average, the percentage of redundant partition transfers can
be estimated as AIX)K , which can be non-trivial if the graph
size is not dramatically larger than the GPU memory size.

Because of the FIFO property of the command queue, it is
obvious that the last processed partition by each queue can
be reused in the next super step. However, to reuse those
partitions, it is critical to not overwrite them before processing
them. Graphie solves this problem by first processing the
partitions that are activated and also resident in the GPU
memory. For each of such partitions, Graphie inserts only the
kernel invocation command to the queue which handled that
partition in the last super step.

V. GRAPHIE SYSTEM

A. Graphie workflow

Renaming | @
engine

Renamed edge data
in partitions

partitions + kernels

E—)
—

—

edge file

Fig. 5: The workflow of Graphie.

We integrate all the proposed techniques in the Graphie
system, whose workflow is shown in Figure 5. The circled
numbers represent different steps. Graphie reads edge data
in text or binary format (step 1). It stores the edge data in
an edge list, which is processed by the renaming engine for
renaming and partitioning (step 2). Note that the renaming
engine can work online or offline. For each edge partition,
Graphie uses one array to store the source vertex IDs and
one array to store the destination vertex IDs. Graphie uses
one more array to store the weight data if there is any. Such
a design choice is to improve memory coalescing, which is
used in many other GPU-based systems. The runtime engine
reads all edge partitions in the CPU memory (step 3). In each
super step, it transfers edge partitions to the GPU and invokes
kernels to process the partitions (step 4). At the end of each
super step, it copies back the flag array (i.e., activated in
Algorithm 3). If any partition is activated, it starts another
super step that consists of steps 4 and 5. Once it detects no
active partitions, the output vertex attribute array is remapped
to the original vertex ids to cope with renaming.



B. Programming interface

Graphie provides a generic kernel, which implements the
Partition KernelV 3 function in Algorithm 3. It invokes two
device functions that the user must implement. The first device
function is Initialize_V A, which should initialize the vertex
attribute array. The implementation is application dependent.
For example, for BFS V A[root] should be initialized to 0,
while all other elements should be initialized as positive
infinity. The second device function is Up, which processes
an edge if the source vertex is active, and returns true if the
destination vertex of the edge is updated (i.e., activated). For
BFS, the destination vertex is updated if its distance (i.e.,
VA_GPU]e.dst]) is larger than the distance of the source ver-
tex plus one (i.e., VA_GPUl[e.src] +1 < VA_GPU]le.dst]).
On the CPU side, the user needs to specify which partitions
are active and hence should be processed on the GPU in the
first super step. For example, the partition that contains the
root vertex should be active for BFS, while all the partitions
should be active for CC.

C. Selecting partition size

As discussed in Section IV, Nvidia GPUs support up to 32
parallel command queues. We use G\S, V.S, AS to denote the
size of the GPU memory, the size of the vertex data, and size
of the flag array, respectively. Given 32 streams, the partition
size can be computed as (GS — VS — AS)/32. However, this
partition size does not address the various properties of graphs.
For small graphs, the whole graph may fit in one partition.
As such, it only uses one stream and does not leverage the
concurrency of the command queues. The kernel computation
starts after the whole graph is transferred, wasting the oppor-
tunity to overlap transfer and compute. It is also possible that
a traversal only accesses a subset of the edges. In this case,
transferring the whole graph is not necessary. Due to these
reasons, Graphie chooses partition size as ES/32, where ES
is the edge data size, to fully utilize all the available command
queues and avoid unnecessary data transfer. For large graphs,
it may be infeasible to support (GS — VS — AS)/32 as the
partition size. Recall that during partitioning, Graphie inserts
virtual vertices to the source vertex sets for renaming, which
increases the largest vertex ID. Because Graphie uses 32 bits to
store the vertex ID, a small partition size may cause an integer
overflow problem. Therefore, Graphie chooses the smallest
partition that does not overflow the 32-bit integer. Note that we
can simply address the problem by using 64-bit representation
for vertex IDs. However, we then increase the edge data size
by 2 times, leading to increased data transfer overhead. It is
our future work to understand the trade-off between the vertex
representation and partition size.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of Graphie by com-
paring it with existing systems and quantifies the effectiveness
of the proposed optimization techniques. Before presenting
the results, we introduce the experiment settings and the
methodology for the experiments.

TABLE II: GPU Specifications

Titan Z (half) Tesla K20c

GPU architecture Kepler (GK110B) Kepler (GK110)
Num. of SMX 14 13
Memory 6GB GDDR5 5GB GDDR5

Memory bandwidth 288 GB/S 208 GB/S
Num. of CUDA cores 2,688 2,496
Theoretical throughput 4,494 GFLOPS 3,524 GFLOPS

A. Experiment setting

a) Environment: Our system has an Intel Xeon (E7-
4830v3, 2.1GHz) 12-core CPU with Hyperthreading disabled.
The main memory of the system is 256GB (16x16GB DDR3
modules at 1866MHz). We use the NVCC compiler version
7.5.17 (g++ version 4.8.4) with O3 to compile all the pro-
grams. The operating system is Ubuntu Linux 14.04 with
Linux kernel version 3.13. The GPU is a NVIDIA Titan Z
containing 2 GPU dies each with 6GB of memory. In all the
experiments, we only use one GPU, and hence the device
memory is limited to 6GB. Table II shows the specification
of a single die of the GPU.

b) Datasets and applications: We evaluate the perfor-
mance of Graphie using three graph traversal algorithms:

o Breadth-First Search (BFS)
o Connected Components (CC)
« Single-Source Shortest Path (SSSP)

The BFS algorithm traverses the vertices of the graph in
order to compute unweighted distances of all vertices from
a root vertex. In SSSP the weights are considered and the
cost of the cheapest path (in terms of the sum of the weights
of its constituent edges) from a root to every vertex is
returned. For BFS and SSSP, we always select a vertex in the
largest connected component as the root. The CC algorithm
finds connected subgraphs of maximal size and returns the
component id for each vertex.

We experiment with 7 real-world and synthetic graphs as
shown in Table I. Cagel5 is an undirected graph describing
DNA electrophoresis, 15 monomers in polymer. Kron_g500-
logn21 (Kron) is a synthetic graph used in the DIMACS
competition. NIpkkt160 (Nlpktt) is a graph generated by a
symmetric indefinite KKT matrix when solving a 3D PDE-
constrained optimization problem. Orkut and Friendster are
graphs from online gaming and social networks. The graph
uk-2002 was obtained from a crawl of the .uk domain in 2002.
Twitter is a subgraph of the Twitter follower graph.

c) Compared systems and methodology: We com-
pare Graphie with three graph systems: X-Stream [1],
CuSha [2], and GraphReduce [17]. X-Stream is a state-of-
the-art edge-centric graph system. Its superior performance
over GraphiChi [9], a vertex-centric graph system, is reported
in several studies [1], [17]. To make fair comparisons, we
allocate enough main memory for X-Stream to load the entire
graph. We exclude the IO time, and only measure the graph
processing time. CuSha is a high performance GPU-based
graph system to process in-memory graphs. For both CuSha
and Graphie, we measure the elapsed time between the point
the first data transfer from the CPU to the GPU starts and the



TABLE III: Execution times of Graphie and the compared systems.

Runtime for Graph (in seconds)
Application Framework cagel5 friendster | kron_g500-logn21 nlpkkt160 orkut twitter uk-2002
Graphie 0.63 16.44 0.59 6.11 0.21 542 43
b X-Stream 32 927.78 333 1524 227 3 10.64
; GraphReduce 18 N/A i 60 6 N/A 9
CuSha 0.45 0.0M. 0.98 257 038 | O.OM. | O.OM.
Graphie 0.23 12.46 0.48 .02 0.26 421 5.04
e X-Stream 543 122452 65 21.84 623 64.45 2873
GraphReduce 41 N/A 9 183 16 N/A 162
CuSha 0.6 0.0M. .13 126 06 | OOM. | O.OM.
Graphie 0.24 29.24 1.67 7.03 0.6 14.67 11.73
s X-Stream 7352 2601.75 936 3598 778 | 93052 63.04
SSSp GraphReduce 25 N/A 7 92 10 N/A 30
CuSha 057 0.0M. .07 153 067 | O.OM. | O.OM
point the final result data transfer from the GPU to the CPU 100
finishes. GraphReduce is an out-of-memory graph processing
system on GPUs, which is also based on edge streaming like 3 o
. . . (]
Graphie. Unfortunately, GraphReduce is not released to public. g
. . (%]
We can hence only reference to the reported execution times I II II III
(data transfer + kernel execution) in [17] on the same set of e leas lees leas leas laas laas loas
.QEU .ng” ng“ .o&“ .Q§° .nﬁ” aau .c:g“

graphs to make rough comparisons. Note that the reported
results in [17] are obtained on an Nvidia Tesla K20c GPU.
Table II shows the specification comparison between K20c
and the Titan GPU used for Graphie. Both GPUs are based
on the Kepler architecture. The Titan GPU has slightly larger
main memory (6GB vs. 5GB) and a larger number of CUDA
cores (2,688 vs. 2,496).

B. Overall results

Table III summarizes the execution times of Graphie and
the three compared systems. N/A for GraphReduce means the
corresponding graph is not used in [17]. O.O.M for CuSha
means the graph is too large to fit in the GPU memory. We
notice that CuSha can only process 4 of the 7 graphs because
of the in-memory processing design. It cannot process uk-
2002, though the graph’s size (3.3GB) is less than the GPU
memory. The reason is that CuSha needs to transform the
original graph to the G-Shard representation, which incurs
non-trivial space overhead. The transformed graph does not
fit in the GPU.

Figure 6 shows the substantial speedups of Graphie over X-
Stream. The most significant improvements are for Friendster,
which is the largest graph we experiment with. Graphie
accelerates CC on the graph by 98X, bringing down the
execution time from 1224.5 seconds from X-Stream to only
12.5 seconds. On average, Graphie achieves 7.2X, 15.5X,
and 20.3X speedups for BFS, SSSP, and CC, respectively.
The results demonstrate the power of using GPUs to process
large-scale graph traversals and Graphie’s lightweight but
efficient design to match the GPU programming model and
architecture.

For Orkut, Cagel5, and Kron, Graphie outperforms CuSha
for 7 out of the 9 runs. The results are impressive because
Graphie is designed for large-scale graph traversal, while
CuSha is heavily optimized for in-memory graph processing.
Graphie benefits from asynchronous edge streaming and its
concise graph representation, while CuSha’s G-Shard format

cagel5 friendster kron nlpktt orkut twitter uk-2002 AVERAGE

Fig. 6: Speedup over X-Stream.

Normalized Execution Time

twitter

friendster kron

cagel5 nlpkkt orkut

Efinal runtime D OPT2savings E OPT1 savings

Fig. 7: Benefits breakdown.

introduces space overhead and makes it hard to use streams.
For Nlpkkt, CuSha produces superior performance, because
the graph has a very large diameter, which has been shown to
cause performance problems for the edge-centric model.

It is worth stressing that the execution times for GraphRe-
duce are reported in [17]. Observe that Graphie reduces the
execution times of GraphReduce by up to 99.4% (CC on
nlpkkt160) by using a GPU whose theoretical throughput is
only 28% higher than that of the GPU used by GraphReduce.
Moreover, GraphReduce categorizes the graphs as out-of-
memory graphs, because it needs both the CSR and CSC
representations of the graph. Thanks to the concise edge
partition representation, Graphie can easily fit all these graphs
in the GPU memory using less than 4GB GPU memory.

C. Breakdown of the optimization benefits

To understand the performance contributions from the pro-
posed techniques, we use OPT1 to represent the optimizations
(i.e., shared memory use + only transferring active partitions)
enabled by Algorithm 3 and OPT2 to represent the opti-
mization to reuse partitions in the GPU memory. Figure 7
demonstrates the execution time savings from OPT1 and OPT2
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Fig. 8: The number of active partitions vs. the number of transferred partitions.

with the naive implementation as the baseline, which does not
use shared memory and transfers all partitions in each super
step. In all the runs, asynchronous streaming is enabled, and
we will analyze its benefit in Section VI-D. The results show
22%-27% average execution time reductions from OPT1 for
the three algorithms. The largest performance gain is from
the CC execution on Twitter, showing 80% reduction of the
execution time (i.e., a 5X speedup). But some executions, such
as the three runs on Nlpkkt, just show trivial performance
improvement, because most of the time all the partitions are
active. OPT2 also dramatically improves the performance with
average execution time reductions between 28% and 38%
across the three algorithms. We observe non-trivial reductions
for all runs, confirming the importance of reusing partitions in
the GPU memory. Working together, OPT1 and OPT2 reduce
the execution time of the naive implementation by an average
of 61% for BFS, 62% for SSSP, and 55% for CC across the
inputs.

To explain the results we just discussed, we show in Figure 8
the number of active partitions and the number of transferred
partitions across super steps for 2 out-of-memory graphs
and 2 in-memory graphs. The numbers of active partitions
may change dramatically because of the dynamic frontier
property of graph traversal algorithms. The patterns for BFS
and CC are however very different. BFS starts with 1 active
partition, which contains the root vertex. The number of active
partitions increases because more vertices and hence partitions
are activated. The number decreases at the end of the execution
because most of the vertices have been processed. Note that
the number of active partitions may remain the same across
super steps. It does not mean the corresponding frontiers have
the same size. A partition is active even if it only contains
one single active source vertex. Therefore, the minimum and
the maximum sizes of the frontier to make all partitions active
are P and N, respectively, which demonstrate a huge gap. The
CC algorithm starts with all partitions being active, and the
number of active partitions decreases along the execution. The
decrease can be fast (e.g., for Twitter) or slow (e.g., for Kron)
depending on the topology of the graph.

The number of transferred partitions is always equal to or
less than the number of active partitions. For the latter, Graphie

further improves performance by avoiding the transfer of
partitions already in the GPU memory. For the two in-memory
graphs, Orkut and Kron, the gap between the two curves is
large, because the transferred partitions are never overwritten
and hence can be reused if needed. For the BFS runs, Graphie
does not transfer any more partitions after the S5th super step,
because the transferred partitions already contain all the source
vertices reachable from the root vertex. The CC runs behave
very differently. All the partitions are transferred in the first
super step, and thus the whole graph is in the GPU memory for
later execution. For the out-of-memory graphs, Friendster and
Twitter, the gap between the two curves is smaller, because
the GPU memory is not large enough to hold all the partitions
and some partitions may be transferred multiple times.

D. Results on asynchronous streaming

Figure 9 shows the performance benefit from asynchronous
edge streaming. We observe that for all the 4 graphs and 3
algorithms, using a larger number of streams improves perfor-
mance in most cases. Friendster can only leverage 16 streams,
because Graphie has to use a large enough partition size to
avoid the integer overflow problem discussed in Section V-C.
For the other three graphs, Graphie produces more than 2X
performance improvement by using 32 streams. The speedup
is much worse than linear, because the streams contend to use
the PCle bus and the same set of GPU cores.

E. Overhead of the renaming processes

As pointed out in Section III, the renaming process only
needs the input graph rather than any runtime parameters (e.g.,
root vertex ID for BFS) and hence can be performed offline.
Table IV shows the overhead of the two rounds of renaming
in seconds. For all graphs, the first-round renaming is more
expensive than the second-round renaming, which aligns well
with the analysis in Section III. We note that the overall
overhead from renaming for the two out-of-memory graphs
(i.e., Friendster and Twitter) is oftentimes negligible compared
to the execution time of X-Stream.

VII. RELATED WORK

To handle large-scale graphs, researchers have designed
many distributed graph processing frameworks [4], [5], [7],
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Fig. 9: Performance improvement when using multiple streams.

TABLE IV: The overhead of renaming in seconds.

Graph Round 1 | Round 2
Cagel5 1.28 0.95
Kron 6.51 1.63
Nlpkkt 2.95 2.35
Orkut 2.3 4.26
Uk-2002 6.02 2.67
Friendster 4.48 2.1
Twitter 3.99 1.35

[81, [29], [30] , most requiring the entire graph data, edges
and vertex, to reside in main memory during execution. But
as several studies have shown [1], [9], [10], [19], [31], [32]
a single-machine based system can dramatically reduce man-
agement overhead while still providing decent performance.
Graphie’s design philosophy aligns well with those studies.

Graph processing on GPUs has also been extensively stud-
ied from various aspects, including synchronization trade-
off [33], data-driven models [12], dynamic graphs [11], graph
optimizing compilers [13], [21], and efficient primitives [15].
All those studies assume the input graph fits in the GPU
memory, and the research focus is on reducing synchronization
overhead or reducing control and memory divergence. Some
studies use multiple GPUs to accelerate graph processing. To
name a few, Ben-Nun et al. [34] proposed GRoute, which
supports efficient asynchronous multi-GPU programming to
handle irregularity in graph processing. Liu et al. [35] dramat-
ically improved concurrent BFS on up to 112 GPUs. Khorasani
et al. [36] improved inter-GPU communication compared with
Medusa [37] and TOTEM [38].

Merrill and others [39] first demonstrated that GPU-based
graph traversals can perform substantially better than the CPU-
based counterparts. The major idea is to use pre-fix sum to
efficiently manage fine-grained tasks. Our work uses pre-fix
sum to track the mapping between renamed vertices and their
attribute data in the GPU memory. Moreover, their work,
like CuSha [2], assumes the graph fits in the GPU. Liu and
Huang further improved BFS’s performance of in-memory
graphs on GPUs through a set of techniques for load balancing
and direction optimization. It is unclear whether the proposed
techniques work well for out-of-memory graphs on a single
GPU.

GraphReduce [17] can process out-of-memory graphs on a
single GPU. It optimizes memory coalescing through using
two different formats, the benefit of which can be easily
cancelled by the redundant data transfers. We show in this
paper that Graphie can directly work on edge lists and its
renaming and reordering techniques do not introduce any
extra space overhead. Further, GraphReduce does not reuse
the already transferred data in the GPU when processing

large-scale graphs. GTS [16] can also process out-of-memory
graphs on GPUs. It leverages slotted page format, which is not
popular in the graph processing area. GTS does not use shared
memory for accessing vertex data or keeping track of updated
vertices. Graphie efficiently tracks the active partitions using
shared memory, which involves negligible transfer overhead
for the meta flag array.

Several works took advantage of both the CPU and GPU
to process graphs. Kaleem et al. [40] proposed a scheduling
algorithm to improve load balance between the CPU and
GPU. Zhang et al. [41] improved scheduling by matching
the irregularity of the tasks and the processor characteristics.
Gharaibeh et al. [38] designed a framework to seamlessly
use both processors to accelerate graph processing. Our work
focuses on only the GPU, but the result shows that Graphie
is usually more than 10X faster than the CPU-based system,
indicating the small potential of using the CPU besides the
GPU.

Researchers have applied different data reorganization tech-
niques to improve the performance of irregular applications
for SIMD-based architectures. Wu et al. [42] studied the
complexity of data reorganization for optimized GPU memory
accesses and proposed several algorithms to strike different
trade-offs. Fauzia et al. [43] implemented a tool to automati-
cally characterize uncoalesed memory accesses and transform
the data to reduce the degree of divergence. Ren et al. [44]
reorganized the tree data structure to improve the performance
of CPU vectorization. Jiang et al. [45] studied the reuse of
reorganized data for dynamic irregular applications.

VIII. CONCLUSION

In this paper, we presented Graphie, a GPU-based graph sys-
tem to perform large-scale graph traversals. Graphie leverages
asynchronous edge streaming to stream edge partitions to the
GPU to hide data transfer overhead. Different from existing
systems with a similar architecture, Graphie improves perfor-
mance of graph traversal through a novel renaming technique.
The renaming process consists of two rounds to enable the
convenient use of shared memory and efficient activation of
edge partitions, which does not introduce any extra overhead
in the GPU memory or in disk. We evaluated Graphie on 7
graphs with up to 1.8 billion edges, and showed that Graphie
substantially outperforms X-Stream and GraphReduce.
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