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Abstract—Graphlet counting is a methodology for detecting
local structural properties of large graphs that has been in use
for over a decade. Despite tremendous effort in optimizing its
performance, even 3- and 4-node graphlet counting routines
may run for hours or days on highly optimized systems. In this
paper, we describe how a synergistic combination of approximate
computing with parallel computing can result in multiplicative
performance improvements in graphlet counting runtimes with
minimal and controllable loss of accuracy. Specifically, we de-
scribe two novel techniques, multi-phased sampling for statistical
accuracy guarantees and cost-aware sampling to further improve
performance on multi-machine runs, which reduce the query time
on large graphs from tens of hours to several minutes or seconds
with only <1% relative error.

I. INTRODUCTION

Graphlets are small (ranging from 3-5 vertices) connected
non-isomorphic induced subgraphs of a large graph, first
described by Przulj et al. [22] in 2004. Graphlet counting
is a methodology for detecting local structural properties to
characterize the input large graphs, offering an alternative to
using global statistics (such as diameter or degree distribution)
to analyze graphs. There are numerous applications of graphlet
counting in various domains, such as bioinfomatics [10], [12],
[32], social networks [21], webspam detection [3], computer
vision [34], and anomaly detection [2]. While graphlet count-
ing has drawn significant attention [12], [12], [20], [32], even
polynomial time algorithms to count graphlets may take too
long on highly optimized systems. For instance, a state-of-the-
art graphlet counting algorithm needs 25.5 hours to process a
graph with 447M edges in a 12-core machine [1].

Researchers have proposed many approaches to using par-
allel hardware to accelerate graphlet counting. Ahmed et
al. [1] proposed a novel parallel algorithm to count both 3-
and 4-node graphlets, which significantly outperforms several
state-of-the-art graphlet counting frameworks, such as FAN-
MOD [32] and Orca [12]. Shun and Tangwongsan [28] care-
fully optimized locality and parallelism for triangle counting
and achieved substantial performance improvements on multi-
core CPUs. Distributed graph processing frameworks, such
as GraphX and PowerGraph, also support simple graphlet
counting algorithms. Despite all the effort, we are not aware
of any system that can provide second-level latency for large
graphs.

In addition to parallel computing, approximate computing
is a strategy which trades off accuracy for performance.
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Shun and Tangwongsan’s work [28] explored approximate
triangle counting but does not support 4-node graphlets.
GRAFT [23] is a more general framework to perform approx-
imate graphlet counting without parallel computing support.
Shang and Yu [27] proposed a compiler-based framework
for automatic approximate graph computation, which also
demonstrated dramatic performance improvement for triangle
counting. However, all these works fail to provide accuracy
guarantees, which dampens user’s willingness to adopt the
proposed approaches. ApproxHadoop [8] and IncApprox [14]
are two approximate computing frameworks for distributed
systems, which may be used to perform approximate graphlet
counting, but they overlook the opportunity to exploit the
relaxed accuracy requirement to improve scalability.

Prior work leaves two research questions unaddressed. First,
can we modify state-of-the-art graphlet counting algorithms
to compute approximate results with an accuracy guarantee?
Second, can we leverage the relaxed accuracy requirement to
improve the algorithm’s scalability in a parallel and distributed
system setting?

To address these questions, we present ApproxG, a frame-
work to perform approximate graphlet counting, which can
easily integrate existing algorithms. ApproxG applies task
sampling, where a task represents the work needed to process
a vertex in a vertex-centric framework (e.g., GraphLab [18]),
or the work needed to process an edge in an edge-centric
framework (e.g., X-stream [25]). Using sampling to reduce
execution time is easy; we just sample a small percentage
of tasks. However, it is challenging to control the sampling
ratio to satisfy a user-defined accuracy requirement. Little
is understood about whether it is more beneficial to sample
vertex-related tasks or edge-related tasks. Moreover, in a
parallel and distributed system where remote communications
dominate execution time, it is unclear how to sample tasks to
improve scalability.

To overcome these challenges, we propose two novel tech-
niques, which combine parallel computing and approximate
computing to produce multiplicative speedups for graphlet
counting. The first technique is multi-phased task sampling,
which leverages sampling theory, to provide statistical ac-
curacy guarantees. Given an accuracy requirement from the
user (e.g., 1% error bounds with 95% confidence interval),
ApproxG executes more and more tasks across phases until it



is confident that the requirement is satisfied. We also show that
although the idea can be easily applied to perform both edge-
centric and vertex-centric task sampling, edge-centric sam-
pling is superior because it needs a smaller number of phases
and requires sampling fewer tasks to reach a given accuracy
level. The second technique is cost-aware task sampling. The
key insight is that in a distributed environment, tasks have non-
uniform costs, as they may involve different amounts of remote
communications. Hence, we should preferentially sample tasks
of smaller costs and meanwhile guarantee that the non-uniform
sampling does not introduce bias.

Though the proposed techniques are general enough for k-
node graphlet counting, where K > 4, we focus on 3-node
and 4-node graphlet counting, whose importance has been
shown in various existing works [1], [7], [24].ApproxG takes
advantage of the proposed techniques and reduces the query
time from tens of hours to several minutes for multiple large
graphs with marginal accuracy loss (<1% relative error).

We make the following contributions in this paper.

o We propose a simple but practical approach to slightly
modify state-of-the-art graphlet counting algorithms to
perform approximate computing, whose accuracy is con-
trolled to provide user with statistical guarantees (Sec-
tion III).

o We parallelize the exact and approximate versions of the
algorithm in a distributed system, and propose cost-aware
sampling to minimize inter-machine communications for
better scalability (Section IV).

o We show through analysis and empirical results that edge-
centric sampling typically outperforms vertex-centric
sampling, demonstrating another benefit of edge-centric
graph processing (Section V and VII).

+ We integrate the proposed techniques in the framework,
ApproxG, which demonstrates up to 3 orders of magni-
tude performance improvements on both single-node and
distributed platforms with less than 1% average accuracy
loss (Section VI and VII).

II. BACKGROUND AND MOTIVATION

In this section, we formally define the graphlet counting
problem, followed by a brief description of a state-of-the-art
algorithm for exact graphlet counting. We then motivate the
work by showing its unsatisfactory performance even if 16
machines are used, and the reasons that cause the inefficiency.

A. Problem Definition and The Exact Algorithm

We consider an undirected connected graph G = (V, E)
with vertex set V and edge set E. A subgraph G’ = (V', F’)
is an induced subgraph of G if the subgraph consists of a
subset of nodes in G and all the edges that connect them
in G (e, V' C Vand E' = {u,v € V' (u,v) € E}).
A connected induced subgraph is also called a connected
graphlet, which we will refer to as graphlets for short in
the remainder of the paper. Figure 1 shows all 3- and 4-
node graphlets. There are two 3-node graphlets and six 4-
node graphlets. The number of distinct graphlets increases
exponentially with the number of vertices in the graphlet. For
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Figure 1: All 3- and 4-node connected graphlets.

instance, the number of connected distinct 5-node graphlets
is 21, over 3x increase from the 4-node case. Hence, many
applications only compute the frequencies for 3- and 4-node
graphlets for computation efficiency [1], [20]. We follow those
works and only consider 3- and 4-node graphlets.

Existing studies proposed various graphlet counting al-
gorithms [1], [12], [20], [32]. Conceptually, many of the
algorithms follow a structure described in Algorithm 1. The
algorithm traverses the edge list, E, and accumulates the
number of graphlets incident upon each edge into a result
variable V. Before NV is returned, it is divided by the number
of edges in the graphlet, because it is over-counted by that
many times. For instance, consider a graph that is a 4-node
clique (G4 in Figure 1). When an edge is processed, the clique
contributes one to the increase in /N. Hence, after all edges
are processed IN’s value is 6, which should be divided by 6
(the number of edges in a 4-node clique) to get the correct
result (1).

The proposed exact algorithms mainly focus on optimizing
the work done by line 4 of Algorithm 1. As far as we know,
the algorithm proposed by Ahmed et al. [1] has the lowest
complexity and can be easily parallelized, and hence is used as
the baseline in this paper. The algorithm directly computes the
frequencies of G (triangle), G5 (wedge), G5 (rectangle), and
G4 (4-node clique) in Figure 1, and the counting of the other
4-node graphlets depends on those 4 frequencies. Therefore,
we only consider those directly counted graphlets.

Algorithm 1: Exact Graphlet Counting

input : G = (V, E), Graphlet pattern: Gy,
output: N : the frequency of G.

1 begin

2 N + 0;

3 for e in E do

4 T «+ no. of graphlets incident upon e;
5 L N+ N+ T,

6 N N

no. edges in G, ’

B. Scalability Problem

We implemented the exact algorithm proposed in [1] using
OpenMP, which took 2 and 48 hours to count the frequencies
of G3 (rectangle) and G4 (clique) in graphs LiveJournal and
orkut, respectively, on one machine of a Blue Gene/Q cluster
(details in Section VII). The result demonstrates that although
the algorithm itself is efficient, the execution time can be
excessively large due to the large data size.

In light of existing work that uses distributed systems
to acclerate graph computation [9], [18], we used MPI to
parallelize the algorithm to run on multiple machines, with
vertices along with their adjacency lists randomly distributed.



We observe that using 16 machines only brings a 6.23X
speedup over the single-machine run (details in Section VII).
The source of the scalability issue is poor locality, which is
observed in multiple existing studies [9], [15]. Although a
more sophisticated graph partitioning approach may improve
locality [13], [33], the partitioning may incur unacceptable
overhead when the graph inputs are only available during
runtime.

We need to alleviate two bottlenecks to substantially im-
prove performance. The first bottleneck is absolute accuracy
which may be an overkill in many applications. For example,
graphlet counting can be used to compare networks [10],
in which a small error (e.g., 1%) may not affect the final
result. The second bottleneck is frequent remote accesses in a
distributed system environment due to the irregularity of the
input graph.

In the next two sections, we propose two approaches to
addressing these bottlenecks. We leverage a simple technique
from approximate computing to exploit the trade-off between
performance and accuracy. We take advantage of the error
tolerance and substantially reduce the number of remote
communications.

III. TASK SAMPLING WITH STATISTICAL ACCURACY
CONTROL

In this section, we apply task sampling to the exact graphlet
counting algorithm to perform the approximate computation.
We then employ sampling theory to determine how to sample
tasks to satisfy user-defined accuracy requirements. We show
a multi-phased sampling design, which can be easily imple-
mented to handle real-world workloads.

A. Task Sampling

We view each iteration of the for loop in Algorithm 1 as
a task, which computes the number of graphlets incident on
the processed edge. Similar to a well-known technique called
loop perforation [29], we can randomly skip some tasks (i.e.,
iterations) to reduce the execution time. In this paper, we call
this technique task sampling. Algorithm 2 shows a simple
way to modify Algorithm 1 to perform task sampling. The
highlighted statements (lines 4—6 and 10) denote the difference
from the exact algorithm. In each iteration, a random number
is generated between 0 and 1, which is compared with the
supplied sampling ratio P to determine if that task should be
processed. Line 10 adjusts the output to estimate the frequency
of the given graphlet pattern. The smaller P is, the more tasks
are skipped, and hence the more we can reduce execution time.

Theorem 1 below shows that Algorithm 2 results in an
unbiased estimate of the count of graphlet G, in the graph.

Theorem 1. The expected value of N computed in Algorithm 2
is equal to the frequency of graphlet Gj.

Proof. Let T; be the actual count of graphlet G, associated
with edge e; processed in iteration 7. Then the actual count
of graphlets is given by (>, 7;)/|Gx|, where dividing by

Algorithm 2: Approximate Graphlet Counting with Task
Sampling
input : G = (V, E), Graphlet pattern Gk,
sampling ratio P
output: N : the estimated frequency of Gy.

1 begin

2 N < 0;

3 for e; in E do

4 r < uniform(0, 1);

5 if » > P then

6 | continue;

7 T; + no. of graphlets incident upon e;;
8 N < N + T3,

9 N« no. ofedjg;]esin Gk;

v | N+ %

|G|, denoting the number of edges in graphlet Gy, adjusts
for overcounting.

Let X; be the random variable denoting the contribution of
edge e; to N in the algorithm. Then E[X;] = (P xT;)+ (1 —
P) x 0 = PT;. The expected number of graphlets counted
within the for loop is given by E[> ., X;] = >, F[X;] =
>, PT; = P, T;, with the first step following from the
linearity of expectations. Dividing by |G| and P proves the
theorem. O

Theorem 1 is interesting because it holds regardless of the
degree distribution or the topology of the graph. However,
in many real-world applications, an unbiased estimate is not
enough, because if the variance is large, the accuracy of one
particular run can be too poor to be useful. It is critical to
allow the user to provide an accuracy requirement (e.g., 1%
error bounds with 95% confidence interval), which should be
enforced by the application. Next we show how to leverage
sampling theory to reach this goal.

B. Multi-Phased Design for Error Control

Conceptually graphlet counting is performed by summing
up a list of L non-negative integers, each of which corresponds
to an edge and is equal to the number of graphlets incident
upon that edge. Essentially, algorithm 2 samples a sub-list,
whose sum is used to estimate the sum of the whole list. We
define the estimated sum as S, and the sum of the original
list as S,.. The goal of error control is then to determine a
sampling ratio such that P(|S, — S;|/Ss < erriy) = 95%,
where erry,, is the target error and 95% is the confidence
interval.

Given a sampling ratio P and a sampled sub-list with P,
we can compute the estimated variance of S, [31]:

Lx(1-P)xs?
P

where s is the variance of the sampled sub-list, and the
estimated error:

(D

VAT est =

A/ VAT est X za/2

S, )

ETTest —



where z, /o represents the z-score at o /2. For 95% confidence
interval, o = 0.05.

If erress > erryge, we can derive a new sampling ratio P’ to
reduce the error by 1) replacing erre,: by errs, in Equation 2,
2) replacing var.s: according to Equation 1, and 3) solving
the equation for P (the solution is P’), which leads to:

2 2
za/st

2 2 20772
za/st + Sgerrig

P = 3

It is guaranteed that P’ > P, because if s, var.,; and S,
are treated as constants, err.s: decreases with larger values of
P according to Equation 1 and 2.

Given this understanding, we propose multi-phased sam-
pling that works as follows. We set the initial sampling ratio
at P = ﬁ chosen empirically with the goals of avoiding
immediate over-sampling and selecting enough data to get an
idea of the variance. We then invoke an iterative process that
consists of three steps to determine the final sampling ratio:

Step 1: Take a sub-list sample based on P.

Step 2: Calculate the estimated error err.s; based on
Equation 1 and 2.

Step 3: If erre,e < erryge, use P as the final sampling ratio.
Otherwise, use Equation 3 to determine the new value for P,
go to step 1.

This iterative approach retains its equivalence to uniform
random sampling without replacement by performing the
iterated sampling process on the previously unsampled data.
For example, let the previous sampling ratio be P, and the
new sampling ratio be P». The unsampled data elements
will be selected in the next phase with probability Iifg L
The cumulative result is that any given data element will
be selected after phase 1 is P, and the probability of any
element being selected by the end of the second phase is
P+ (1 — Pl) X 112771;1;1 = DPs.

We note that because the sampling ratio is monotone
increasing by strides of 0.0001 and a sampling ratio of 1
produces the exact result, ApproxG will eventually reach the
accuracy requirement, which needs at most 10,000 phases.

IV. SCALING APPROXIMATE GRAPHLET COUNTING TO
MULTIPLE MACHINES

The last section describes the modified serial algorithm
to compute the approximate frequency of graphlets. In this
section, we first show how to parallelize the approximate
algorithm in a distributed system. We then show the scalability
problem of random task sampling. We propose cost-aware task
sampling, which does not introduce bias and has the potential
to substantially improve scalability.

A. Random Task Sampling and Its Scalability Problem

To parallelize Algorithm 2, we need to partition the graph
among multiple machines. Partitioning graphs to minimize
communication is an NP-hard problem [5]. Although there
exist relatively fast heuristic partitioning algorithms, we are
not aware of a fast and effective partitioning algorithm for
very large graphs. Meanwhile, sophisticated graph partitioning
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Figure 2: The scalability problem of random task sampling.
algorithms may introduce too much overhead, outweighing
their advantages. In this paper, we use a simple partitioning
algorithm, which randomly distributes the vertices along with
their adjacency lists to different machines. Each machine runs
Algorithm 1 or Algorithm 2 to compute the frequency of
graphlets in the partitioned sub-graph, and at the end we
aggregate those partial frequencies to produce the final result.

To illustrate the scalability problem of naive random sam-
pling, consider approximate triangle counting on A machines
with P as the sampling ratio. After distributing the graph
data, we have two categories of edges. One category is inter-
machine edges, whose incident vertices (and their adjacency
lists) reside on two different machines; the other category is
intra-machine edges, whose incident vertices reside on the
same machine. Given an edge (u,v) and a machine A that
owns vertex u, the processing of the edge on A needs to
retrieve the adjacency list of v if it is an inter-machine edge
(i.e., v is on a different machine). Assume that on average
retrieving the adjacency list of a remote vertex is C' times
more expensive relative to retrieving the adjacency list of
a local vertex. Since the vertices are randomly distributed,
the probability for an edge to be an inter-machine edge is
(M — 1)/M, where M is the number of machines. Hence,
the speedup limit of approximate graphlet counting by using
M machines over the exact algorithm on one machine can be
estimated as:

cost of processing | E |edges in the single-machine setting

Speeduprandom =
cost of processing @Z\?—P edges in the distributed system setting

|E|

‘EZ‘VIXP x(ﬁJr
M2
T Px(CM_Ct1

C><(M—1))
M

Figure 2 shows the estimated speedups given different
numbers of machines and different values for C. The task
sampling ratio is 10%, meaning that the ideal linear speedup
that can be obtained from task sampling and parallel execution
should be 10 x M. We observe that when C' increases, the
estimated speedup quickly decreases. When C' = 4, the
estimated speedup using 16 machines is about 1/4 of the ideal
speedup (i.e., when C' = 1). The performance even degrades
when the number of machines (i.e., parallelism) is too small
to compensate the cost of remote communications.

We implement micro-benchmarks to test the cost of remote
communications on the Blue Gene/Q cluster (platform details
in Section VII). The microbenchmark compares the execution
times of reading a IMB array from local DRAM and a remote
machine. We found that the remote communications (mem-
ory accesses) are approximately 8X more costly than local



communications (memory accesses). The results, together with
Figure 2, show that remote communications may seriously
degrade the performance benefits from sampling.

B. Cost-Aware Task Sampling

The pitfall of naive random task sampling is that it does
not consider non-uniform costs of tasks. A task that processes
an inter-machine edge incurs greater cost compared with one
that processes an intra-machine edge. To improve scalability,
we propose a methodology for cost-aware task sampling that
crucially does not impact the uniform random nature of the
edge-dropping in Algorithm 2 assumed in Theorem 1.

Algorithm 3: Approximate Graphlet Counting with Cost-
Aware Task Sampling

input : G = (V, E), Graphlet pattern G, sampling ratio for
single-machine processing P, no. of machines

M(M > 1)
output: N : the estimated frequency of Gy, in G.
1 begin
2 N + 0;
3 P« M x P;
4 for e in E do
5 r < uniform(0,1);
6 if e is an inter-machine edge then
7 ifP’glorr>%then
8 | continue;
9 else
/* e is an intra-machine edge */
10 if » > P’ then
1 | continue;
12 T <+ no. of graphlets incident upon e¢;
13 N+ N+T;
| N oresesar
15 N + %;

Our methodology is described in Algorithm 3, whose main
idea is that intra-machine edges are preferentially sampled.
We describe how the algorithm works: first it assumes that
vertices and their adjacency lists are randomly assigned to the
M machines as noted earlier. Any edge (u, v) is then an intra-
machine edge with identical probability 1/M. Hence, when
the sampling probability P < 1/M, the expected number
of intra-machine edges is larger than the expected number of
sampled edges. In this case, the algorithm skips all tasks that
process inter-machine edges (lines 7-8) and samples tasks that
process intra-machine edges with probability P’'(P’ = M x P)
(lines 10-11). When P > 1/M(i.e., P’ > 1), the algorithm
processes all intra-machine edges (lines 10-11) and samples a
portion of inter-machine edges (lines 6—8) determined by the

sampling ratio as XL,

Lemma 2. Algorithm 3 samples any edge with probability P.

Proof. Recall that any edge (u,v) is intra-machine with prob-
ability ﬁ and inter-machine with probability % because of
the uniform random assignment of vertices to machines.

Case 1: 0 < P < ﬁ Intra-machine edges are sampled
with probability P’ = PM and inter-machine edges with

probability 0. The probability that edge (u,v) is sampled is
given by (& x PM) + (4= x 0) = P.

Case 2: ﬁ < P < 1. Intra-machine edges are sampled with
probability 1 and inter-machine edges with probability £M=1

M—1 °
The probability that edge (u, v) is sampled is given by (77 x
1) + (M=l BM=1y which is - + PM=1 = p. O

Theorem 3. The expected value of N computed in Algorithm 3
is equal to the frequency of graphlet Gj.

Proof. The proof follows trivially from Lemma 2 and an
argument identical to that used in the proof of Theorem 1. [J

Given a specific partitioning of the input graph, the sampling
in Algorithm 3 is dependent. For example, assume that all the
three vertices of a triangle are placed on the same machine.
If two edges of the triangle are sampled, the third one has
a higher chance to be sampled. However, we stress that the
dependence does not affect the major result of Theorem 3,
because the random partitioning itself is part of the algorithm,
as shown in Lemma 2.

For triangle and wedge counting, the processing of an edge
only needs the adjacency lists of the two incident vertices. If
the task sampling ratio (P) is smaller than 1/M, cost-aware
sampling successfully eliminates all remote communications.
In the section VII, we will show that for most graphs the
needed sampling ratio is indeed smaller than 1/M to satisfy
the accuracy requirement (1% error bounds with 95% confi-
dence interval). However, for four-node graphlets, to process
an edge (u,v) on a machine that owns u, the algorithm has
to retrieve all the adjacency lists of u’s neighbors. On average
Algorithm 3 can only reduce at most 1 remote retrieval, which
is only modest improvement. One possible way to further
reduce remote accesses is to consider the ratio of remote
neighbors for each vertex, which will be explored in the future.

V. VERTEX- VS. EDGE-CENTRIC TASK SAMPLING

The previous two sections described an edge-centric task
sampling approach, which samples tasks that process edges.
Some graph processing frameworks take a vertex-centric ap-
proach, in which a task processes a vertex. Algorithm 4 shows
that task sampling can be easily applied to sample vertex-
related tasks. Lines 5-6 control the sampling, and if a task is
skipped none of the edges incident on the vertex are processed.

The following theorem shows that, like the previous algo-
rithms, this algorithm produces an unbiased estimate.

Theorem 4. The expected value of N computed in Algorithm 4
is equal to the frequency of the graphlet Gj.

We omit the proof, which is similar to that of Theorem 1.

It may seem that vertex-centric sampling should perform as
well as edge-centric sampling, because with the same sampling
ratio both approaches sample roughly the same percentage of
tasks. However, recall that as described in Section III, given an
accuracy requirement, the needed sampling ratio is dependent
on the variance of the number of graphlets incident on an
edge. Similarly, the sampling ratio of vertex-centric sampling



Algorithm 4: Vertex-Centric Approximate Graphlet Cout-
ing

input : G = (V, E), Graphlet pattern G, sampling ratio P
output: N : the estimated frequency of G.
begin
N + 0;
for vin V do

r < uniform(0,1);

if > P then

| continue;

7 for e in v.incident_edges() do
8 L T <« no. of graphlets incident on e;
9

N+ N+T;
N .
10 N« no. of edges in G, ’

11 7Neﬁ;

Table I: Maximum number of graphlets incident on an edge
or vertex (D denotes the maximum degree of the input graph)

Graphlet max. no. of graphlets | max. no. of graphlets
incident on an edge incident on a vertex

Wedge 2x(D-1) (g)

Triangle D—-1 (L2) )

Rectangle (D —1)2 (g)

4-node Clique (D;l) (?)

depends on the variance of the number of graphlets incident
on a vertex. The larger the variance is, the larger the needed
sampling ratio becomes. While the variance depends on the
input graph, we analyze the range of the number of graphlets
incident on an edge or a vertex. As shown by Hozo et al. [11], a
larger range typically implies a larger variance. The minimum
number of graphlets incident on an edge or a vertex is 0.
Table I shows the maximum possible number of graphlets
incident on an edge or a vertex. Observe that the range for
vertex-centric sampling is much larger than that for edge-
centric sampling except for rectangle. We hence speculate that
edge-centric sampling is superior to vertex-centric sampling,
which will be empirically evaluated in the next section.

VI. IMPLEMENTATION OF THE APPROXG FRAMEWORK

This section describes the major components and the work-
flow of the ApproxG framework, followed by the presentation
of three optimizations to improve its performance.

Figure 3 shows the workflow of the ApproxG framework.
The user specifies the graph location, the accuracy require-
ment, the graphlet pattern, and the initial sampling ratio in
the configuration file. After ApproxG partitions the graph,
each machine maintains a list of local vertices and a list of
remote vertices. Each of the OpenMP threads runs Algorithm 3
to traverse an edge chunk owned by the host machine and
maintains the number of incident graphlets to each processed
edge and their mean and variance. At the end of the edge
processing, the machines reach a global synchronization to
exchange the local statistics and use the techniques described
in Section III to determine whether the accuracy requirement

config. file

‘generate rand.

"""" L. Ly
edgedam:J ot 4
1 (Edge processing

Edge processing
inOpenMp J&—> = &— in OpenMP
local statistics local statistics

Machine M

/

Machine 1

local count l

Covou >
Figure 3: Illustration of the ApproxG framework.

has been satisfied. The local count is sent to the master
machine if that is the case. Otherwise, every machine computes
a new sampling ratio to traverse all edges again.

Besides sampling, ApproxG implements three optimizations
to improve performance.

Reducing the overhead of random number generation: Ac-
cording to Algorithm 3, ApproxG needs to determine whether
to process an edge depending on a sampling ratio. Hence, a
naive implementation may generate |E| x L random numbers,
where |E| is the number of edges and L is the number of
phases. Given the large value for |F| of large graphs, the
incurred overhead can be prohibitive. ApproxG reduces the
overhead through two approaches. First, ApproxG generates a
random number in the range [0, 1) for each edge in parallel
with graph loading. Second, in phase i(i > 0), ApproxG
processes an edge only if its corresponding random number r
satisfies the following condition: P, < r < F;, where P; is
the sampling ratio in phase ¢ and P is the initial sampling ra-
tio. Therefore, ApproxG only generates | F'| random numbers,
whose overhead is removed from the critical path.

Reducing space overhead of the maintained statistics: In
the distributed setting, ApproxG adopts the hybrid processing
model. It uses OpenMP threads to process the edges and MPI
to handle inter-machine communication. Each thread processes
a large number of edges and needs to compute the variance
and mean values for the counts corresponding to the sampled
edges. To save space overhead, ApproxG implements an online
algorithm [30], which uses only one variable for each statistic.

Reducing remote communication cost: The processing step
for any particular edge requires data which may not be avail-
able on the local machine. Instead of requiring the remote data
immediately to perform the computation, ApproxG instead
defers the processing of that edge until all the required remote
data is identified. The host of the required data may then
send a large buffer containing all the needed data to avoid
the otherwise expensive round trip message costs.

VII. EVALUATION

In this section, we evaluate ApproxG on real-world graphs.
We first explore the trade-off between performance and accu-
racy. We then evaluate the multi-phased design on a single
machine. We use a cluster system to show the improved
scalability brought by cost-aware sampling.



Table II: Real-world graphs used in the experiments.

graph V] |E| Size
LiveJournal 4AM 35M  550MB
arabic-2005 23M  554M 9.1GB
dewiki-2013 1.5M 33M  474MB
enwiki-2013  4.2M 92M 1.4GB
eu-2015-host 1M 261M 4.1GB
eu-2015-tpd  6.7M  112M 1.7GB
gsh-2015-tpd 31IM 490M 8.2GB
hollywood-2009  1.1M 56M  763MB
ljournal-2008  54M 50M 789MB
orkut 3.1IM 117M 1.7GB
uk-2002 18M  262M 43GB

A. Methodology

Programs. We parallelize the exact algorithm proposed in [1]
using OpenMP and MPI. OpenMP provides parallelism within
one machine and MPI enables inter-machine communications.
To minimize the overhead of graph partitioning, ApproxG
randomly partitions the vertices along with their adjacency
lists to different machines. We parallelize the edge and
vertex traversals, respectively, for edge-centric and vertex-
centric task sampling. For each exact algorithm, we implement
the approaches proposed in previous sections to create the
corresponding approximate programs, with cost-aware task
sampling enabled by default. For each run of ApproxG that
computes the frequencies of multiple graphlets, the accuracy
requirement is enforced for all the computed graphlets.

Graph inputs. Table 11 shows the real-world graphs used in
the experiments. LiveJournal and Orkut come from the Stan-
ford’s SNAP datasets [17]. The other graphs come from the
Laboratory for Web Algorithmics at UNIMI [4]. LiveJournal
and ljournal-2008 were extracted from the social network
LiveJournal in 2006 and 2008 respectively. Orkut is an online
social network. Hollywood-2008 represents actors who co-
appear in movies. Wikipedia’s German and English pages
create the dewiki-2013 and enwiki-2013 graphs respectively.
The remaining datasets come from web crawls looking at all
pages (no suffix), top private domains (-tpd) or hosts (-host).
Since the exact 4-node graphlet counting program requires
more than 48 hours to process any of arabic-2005, enwiki-
2013, eu-2015-host, eu-2015-tpd, and gsh-2015-tpd on one
single BGQ machine, we exclude them for the 4-node graphlet
counting experiments. We also point out that the sizes of the
graph inputs are larger than those used in most related work.

Parameters and metrics. We set the default accuracy require-
ment as 1% error with 95% confidence. We use execution time
and the error of the estimated frequency to evaluate the ap-

. . _ |Fa—Fy
proximate programs. The error is defined as error = 7"
where F, is the approximate frequency and F). is the “real
frequency (ground truth). For an approximate program that
computes frequencies of multiple graphlet patterns, we report
the maximum error over all the graphlets.

El

Machine environment. The experimental platform is an IBM
BlueGene/Q cluster with identical machines connected to the
5-D torus interconnect network. Each machine offers 16 cores
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Figure 4: Relation between sampling ratio and accuracy.
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Figure 5: Execution times of the exact and approximate 3-
node graphlet counting on a single machine. The speedup of
approximate counting over the exact version reaches as much
as 224X.

and 16 GB main memory. The operating system is Linux
(kernel version 2.6.32). The compiler is IBM XLC (version
12.1) used with optimization level O4. The operating system
is Ubuntu 14.04.

B. Results on a Single Machine

Figure 4 demonstrates the relationship between sampling
ratio and accuracy for both edge-centric and vertex-centric
task sampling. Each data point represents the geometric mean
error for all input graphs. As expected, error decreases as
we increase the sampling ratio. Observe that the performance
potential for the edge-centric sampling approach is substantial
because with 1% sampling, the errors for 3-node and 4-node
graphlets are only 0.2% and 0.3%, respectively. Even if only
0.1% of the edges are sampled, the errors are less than 1.6%.
However, the vertex-centric approach shows a trade-off which
is much more difficult to exploit. When 1% of the vertices are
sampled, the errors for 3-node and 4-node graphlet are around
7.1% and 7.6%, respectively, which many applications may
not tolerate. If we decrease the sampling ratio to 0.1%, the
error for 3-node graphlets jumps to 17.6%, which is 15.4X
higher than that of edge-centric sampling. The results echo
the speculation in Section V, and we conclude that edge-
centric sampling is superior to vertex-centric sampling. Hence,
we only evaluate edge-centric sampling in the remaining
experiments.

Figure 5 (a) shows the single-machine execution times of
the exact and approximate 3-node graphlet counting programs.
We observe substantial performance improvement for all 11
graphs. One trend is that larger graphs tend to benefit more
from task sampling. For example, the two largest graphs, gsh-
2015-tpd and arabic-2005, enjoy the largest speedups, 212X
and 224X, respectively as shown in Figure 5 (b). The exact
program needs 17,032 seconds to process gsh-2015-tpd, for
which the approximate program samples 0.25% of the edges



Execution Time

(a) Execution time

(b) Speedups

Figure 6: Execution times of the exact and approximate 4-
node graphlet counting on a single machine. The speedup of
approximate counting over the exact version reaches as much
as 118X.
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Figure 7: Relative errors produced by the approximate pro-
grams.

and takes only 76 seconds. ApproxG reduces the average
processing time for a graph from 2591 seconds to 179 seconds.
Figure 6 (a) shows the execution times for both the exact and
approximate programs for 4-node graphlet counting, which
follows a similar trend as in Figure 5 (a). The large graphs
benefit more from the approximate program as Figure 6 (b)
shows. The approximate program provides an average of 62X
speedup and as much as 118X performance improvement for
Orkut.

Figure 7 shows the relative errors of the approximate
programs with respect to the ground truth. One bar represents
the maximum error of the graphlet counts from ApproxG
runs on a graph. Recall that we exclude 5 graphs for 4-
node graphlet counting, so the figure omits 5 bars. Observe
that the multi-phased sampling controls the errors very well,
yielding on average 0.72% and 0.64% errors for 3-node and
4-node graphlet counting, respectively. For arabic-2005, the
errors can be up to 1.2%, which is larger than the 1% error
bound. However, note that the error bound is with the 95%
confidence interval, so it is a statistical guarantee. Among the
34 estimated frequencies the error bound is only violated 2
times, and the second largest error is 1.03% for clique counting
in hollywood-2009. Therefore, we conclude that the multi-
phased sampling is effective in terms of providing substantial
performance improvement as well as statistical error control.

Figure 8 shows the average speedup results for all graphs
with different error requirements at 95% confidence. Inter-
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Figure 8: Performance improvement
requirements.

for different accuracy

estingly, we observe that the speedup for 4-node graphlet
counting increases much more quickly than that for 3-node
graphlet counting. With similar speedups at a 1% error bound,
the speedup difference widens to be 4.6X when the error
bound is 4%. One plausible reason is that the 4-node graphlet
counting is more compute-bounded compared with 3-node
graphlet counting, and hence benefits more from running fewer
tasks.

Discussion. It may seem surprising that ApproxG achieves
< 1% accuracy loss when sampling less than 1% of the edges.
As Freedman et al. point out [6], What fundamentally matters
for the variability of a statistic from a random sample is the
sample’s absolute size rather than its relative size relative to the
population. For orkut, ApproxG samples 0.3% of the edges,
but because the graph is large, the sample size is around
0.35M. The results demonstrated by ApproxG and the counter-
intuitive relation between sampling fraction and variability of
statistics indicate a tremendous opportunity for approximate
computing for big graph applications.

C. Results on Multiple Machines

Figure 9 shows the performance improvements of both the
exact and approximate programs in the distributed system with
all graphlets counted in each run. The baseline is the execution
time of the exact programs on a single machine. For each
setting, we plot the average speedup for all graphs and the
error bar, which shows the minimum and maximum speedup.
Observe that as the number of machines increases the exact
program produces better performance, which aligns well with
the research efforts in distributed graph processing. However,
due to frequent remote communication, the scalability is far
from ideal. When using 16 machines, the exact program runs
only 6.23X faster. The approximate program improves the
scalability by discarding most of the computation and sam-
pling low-cost tasks. By using 16 machines, the approximate
program yields an average of 480X speedup (up to 1061X
speedup) over the exact program running on a single machine.
Observe that there still exists a gap between the performance
produced by the approximate program and the ideal linear
speedup when multiple machines are used. The reason is that
the sampled tasks for the approximate program still incur a
non-trivial amount of remote communications, which bounds
the maximum possible performance improvement.

Table III reports the relative errors of the distributed approx-
imate program with respect to the ground truth. Observe that
for all six machine configurations, the average error is smaller
than 1%, empirically confirming that neither the parallelization
nor cost-aware dropping introduces bias. Similar to the error
results of the single-machine experiments, the error can be
larger than 1%, which happens 2 times for all 144 estimated
frequencies.

Figure 10 shows the benefit of cost-aware task sampling
over random task sampling for 3-node graphlet counting.
Since for most runs the sampling ratio is smaller than 1/M,
where M is the number of machines, cost-aware task sampling
eliminates all remote communications in those cases (except
for final statistics). Overall, cost-aware task sampling produces
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Figure 9: Scalability of exact counting and approximate count-
ing.

Table III: Maximum error values for different machine counts

Machines 1 2 4 8 12 16

min(error)  0.22% 027% 0.091% 038% 0.14% 0.43%
avg(error) 0.64%  0.65% 0.39% 061% 041% 0.62%
max(error) 1.03% 1.21% 0.68% 077% 084% 0.81%

on average 1.37X performance improvement over random
task sampling, which means an extra 130x speedup over the
exact program. Note that the speedup is far from 8x (ie.,
the cost of remote communication), because ApproxG just
samples a small portion of the edges, making other parts
of the program, such as traversing random numbers, more
significant. Theoretically, when more machines are used, the
performance of random task sampling should degrade. The
reason is that the probability for an edge to be an inter-
machine edge increases, and hence the randomly sampled tasks
should incur more remote communications. However, we do
not observe larger improvement from cost-aware task sam-
pling with more machines. A plausible reason is that several
other factors may affect performance, including computation-
communication overlapping and load imbalance (due to the
random graph partitioning). We point out that the Blue Gene/QQ
cluster has highly optimized hardware to support remote
communications, which is not available in most commodity-
hardware-based distributed systems. Therefore, we expect that
task-aware sampling would perform significantly better than
random sampling in latter systems.

Discussion.  Unlike many distributed graph processing
systems, ApproxG does not optimize load balance because of
two reasons. First, with cost-aware sampling, ApproxG already
reduces the processing time to the order of seconds or minutes.
However, a partitioning algorithm for load balance may take
even longer than the current processing time of ApproxG.
For instance, on one Blue Gene/Q node, PowerGraph [9]
takes more than 3 minutes to partition Arabic-2005, while
ParMETIS [16], a popular multi-threaded graph partitioning
library, takes more than 15 minutes. Second, the random par-
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Figure 10: Performance improvement of cost-aware sampling
over random sampling.

titioning in ApproxG simplifies the enforcement of statistical
accuracy guarantees as shown in Algorithm 3.

VIII. RELATED WORK

In this paper, we combine parallel computing and ap-
proximate computing to produce multiplicative performance
improvement for graphlet counting with statistical accuracy
guarantees. Next, we briefly describe some closely related
work.

Graphlet counting. Researchers have proposed various ap-
proaches to count or estimate the frequencies of graphlets.
Ahmed et al. [1] proposed an algorithm, the one this paper
uses as the baseline, to count all 3- and 4-node graphlets,
which significantly improved the time complexity compared to
other franeworks [12], [20], [32]. Orca [12] is a state-of-the-art
graphlet counting framework widely used in Bioinformatics,
which is however substantially outperformed by Ahmed’s
algorithm. Shun and Tangwongsan [28] designed a cache-
friendly exact triangle counting algorithm, which achieved
up to 50X speedup over previous exact triangle counting
algorithms on a 40-core machine. They further proposed an
approximate version of the algorithm based on random color
assignment to vertices. Only edges whose incident vertices
have the same color are processed. Although the estimate
is unbiased, their approach does not provide any accuracy
guarantee. Graft [23] is a framework to estimate both 3- and 4-
node graphlets, but similar to Shun and Tangwongsan’s work
it does not provide statistical accuracy guarantees. In addi-
tion, Graft does not support parallel processing. These exact
graphlet counting approaches are suitable for applications that
can not tolerate errors in the results.

Parallel graph processing. Scalable distributed graph pro-
cessing is challenging due to the irregularity of the data
inputs and the high overhead of remote data accesses. Power-
Graph [9], the core technique of GraphLab [18], proposed a
novel vertex cut based partitioning algorithm to reduce remote
data accesses. GPS [26] is an open-source implementation
of Google’s Pregel [19], which partitions the adjacency list
of high-degree vertices. For each partition, a mirror of the
vertex is created to optimize remote data accesses. In this
paper, we show that error tolerance provides an extraordinary
opportunity to eliminate or substantially reduce remote data
accesses.

Approximate computing. Multiple studies in the approximate
computing area endeavor to change existing applications to
trade off accuracy for great reduction on execution time.
Sidiroglou et al. [29] used iteration skipping for application
in various domains and demonstrated substantial performance
improvement. ApproxHadoop [8] combined task dropping
with data sampling and provides statistical error bounds.
However, the work mainly considered regular applications and
did not optimize remote communications in particular. Shang
and Yu [27] proposed a compiler-based approach to enable
automatic approximate graph computation. Although the work
involved triangle counting, it did not provide accuracy guar-
antee. Moreover, they did not study the connection between
approximation and scalability in a distributed system.



IX. CONCLUSION

In this paper, we presented a framework named ApproxG
to apply an approximate computing technique, called task
sampling, to graphlet counting. We proposed simple, yet
practical approaches to slightly modify an exact algorithm to
perform approximate computation with controllable accuracy.
Those approaches can be easily implemented in both vertex-
centric and edge-centric processing models, but we demon-
strated that edge-centric sampling performs substantially better
than vertex-centric sampling. To scale the computation in a
distributed system, we proposed cost-aware task sampling,
which preferentially samples tasks that involve fewer remote
communications. The experiments on 11 real-world graphs
validated the effectiveness of the proposed approaches, which
showed the great potential of approximate computing for graph
computation.
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