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Abstract—Graphlet counting is a methodology for detecting
local structural properties of large graphs that has been in use
for over a decade. Despite tremendous effort in optimizing its
performance, even 3- and 4-node graphlet counting routines
may run for hours or days on highly optimized systems. In this
paper, we describe how a synergistic combination of approximate
computing with parallel computing can result in multiplicative
performance improvements in graphlet counting runtimes with
minimal and controllable loss of accuracy. Specifically, we de-
scribe two novel techniques, multi-phased sampling for statistical
accuracy guarantees and cost-aware sampling to further improve
performance on multi-machine runs, which reduce the query time
on large graphs from tens of hours to several minutes or seconds
with only <1% relative error.

I. INTRODUCTION

Graphlets are small (ranging from 3-5 vertices) connected

non-isomorphic induced subgraphs of a large graph, first

described by Pržulj et al. [22] in 2004. Graphlet counting

is a methodology for detecting local structural properties to

characterize the input large graphs, offering an alternative to

using global statistics (such as diameter or degree distribution)

to analyze graphs. There are numerous applications of graphlet

counting in various domains, such as bioinfomatics [10], [12],

[32], social networks [21], webspam detection [3], computer

vision [34], and anomaly detection [2]. While graphlet count-

ing has drawn significant attention [12], [12], [20], [32], even

polynomial time algorithms to count graphlets may take too

long on highly optimized systems. For instance, a state-of-the-

art graphlet counting algorithm needs 25.5 hours to process a

graph with 447M edges in a 12-core machine [1].

Researchers have proposed many approaches to using par-

allel hardware to accelerate graphlet counting. Ahmed et

al. [1] proposed a novel parallel algorithm to count both 3-

and 4-node graphlets, which significantly outperforms several

state-of-the-art graphlet counting frameworks, such as FAN-

MOD [32] and Orca [12]. Shun and Tangwongsan [28] care-

fully optimized locality and parallelism for triangle counting

and achieved substantial performance improvements on multi-

core CPUs. Distributed graph processing frameworks, such

as GraphX and PowerGraph, also support simple graphlet

counting algorithms. Despite all the effort, we are not aware

of any system that can provide second-level latency for large

graphs.

In addition to parallel computing, approximate computing

is a strategy which trades off accuracy for performance.

Shun and Tangwongsan’s work [28] explored approximate

triangle counting but does not support 4-node graphlets.

GRAFT [23] is a more general framework to perform approx-

imate graphlet counting without parallel computing support.

Shang and Yu [27] proposed a compiler-based framework

for automatic approximate graph computation, which also

demonstrated dramatic performance improvement for triangle

counting. However, all these works fail to provide accuracy

guarantees, which dampens user’s willingness to adopt the

proposed approaches. ApproxHadoop [8] and IncApprox [14]

are two approximate computing frameworks for distributed

systems, which may be used to perform approximate graphlet

counting, but they overlook the opportunity to exploit the

relaxed accuracy requirement to improve scalability.

Prior work leaves two research questions unaddressed. First,

can we modify state-of-the-art graphlet counting algorithms

to compute approximate results with an accuracy guarantee?

Second, can we leverage the relaxed accuracy requirement to

improve the algorithm’s scalability in a parallel and distributed

system setting?

To address these questions, we present ApproxG, a frame-

work to perform approximate graphlet counting, which can

easily integrate existing algorithms. ApproxG applies task

sampling, where a task represents the work needed to process

a vertex in a vertex-centric framework (e.g., GraphLab [18]),

or the work needed to process an edge in an edge-centric

framework (e.g., X-stream [25]). Using sampling to reduce

execution time is easy; we just sample a small percentage

of tasks. However, it is challenging to control the sampling

ratio to satisfy a user-defined accuracy requirement. Little

is understood about whether it is more beneficial to sample

vertex-related tasks or edge-related tasks. Moreover, in a

parallel and distributed system where remote communications

dominate execution time, it is unclear how to sample tasks to

improve scalability.

To overcome these challenges, we propose two novel tech-

niques, which combine parallel computing and approximate

computing to produce multiplicative speedups for graphlet

counting. The first technique is multi-phased task sampling,

which leverages sampling theory, to provide statistical ac-

curacy guarantees. Given an accuracy requirement from the

user (e.g., 1% error bounds with 95% confidence interval),

ApproxG executes more and more tasks across phases until it



is confident that the requirement is satisfied. We also show that

although the idea can be easily applied to perform both edge-

centric and vertex-centric task sampling, edge-centric sam-

pling is superior because it needs a smaller number of phases

and requires sampling fewer tasks to reach a given accuracy

level. The second technique is cost-aware task sampling. The

key insight is that in a distributed environment, tasks have non-

uniform costs, as they may involve different amounts of remote

communications. Hence, we should preferentially sample tasks

of smaller costs and meanwhile guarantee that the non-uniform

sampling does not introduce bias.

Though the proposed techniques are general enough for k-

node graphlet counting, where K > 4, we focus on 3-node

and 4-node graphlet counting, whose importance has been

shown in various existing works [1], [7], [24].ApproxG takes

advantage of the proposed techniques and reduces the query

time from tens of hours to several minutes for multiple large

graphs with marginal accuracy loss (<1% relative error).

We make the following contributions in this paper.

• We propose a simple but practical approach to slightly

modify state-of-the-art graphlet counting algorithms to

perform approximate computing, whose accuracy is con-

trolled to provide user with statistical guarantees (Sec-

tion III).

• We parallelize the exact and approximate versions of the

algorithm in a distributed system, and propose cost-aware

sampling to minimize inter-machine communications for

better scalability (Section IV).

• We show through analysis and empirical results that edge-

centric sampling typically outperforms vertex-centric

sampling, demonstrating another benefit of edge-centric

graph processing (Section V and VII).

• We integrate the proposed techniques in the framework,

ApproxG, which demonstrates up to 3 orders of magni-

tude performance improvements on both single-node and

distributed platforms with less than 1% average accuracy

loss (Section VI and VII).

II. BACKGROUND AND MOTIVATION

In this section, we formally define the graphlet counting

problem, followed by a brief description of a state-of-the-art

algorithm for exact graphlet counting. We then motivate the

work by showing its unsatisfactory performance even if 16

machines are used, and the reasons that cause the inefficiency.

A. Problem Definition and The Exact Algorithm

We consider an undirected connected graph G = (V,E)
with vertex set V and edge set E. A subgraph G′ = (V ′, E′)
is an induced subgraph of G if the subgraph consists of a

subset of nodes in G and all the edges that connect them

in G (i.e., V ′ ⊂ V and E′ = {u, v ∈ V ′, (u, v) ∈ E}).

A connected induced subgraph is also called a connected

graphlet, which we will refer to as graphlets for short in

the remainder of the paper. Figure 1 shows all 3- and 4-

node graphlets. There are two 3-node graphlets and six 4-

node graphlets. The number of distinct graphlets increases

exponentially with the number of vertices in the graphlet. For

G1 G2 G3 G4

G5 G6 G7 G8

Figure 1: All 3- and 4-node connected graphlets.

instance, the number of connected distinct 5-node graphlets

is 21, over 3× increase from the 4-node case. Hence, many

applications only compute the frequencies for 3- and 4-node

graphlets for computation efficiency [1], [20]. We follow those

works and only consider 3- and 4-node graphlets.

Existing studies proposed various graphlet counting al-

gorithms [1], [12], [20], [32]. Conceptually, many of the

algorithms follow a structure described in Algorithm 1. The

algorithm traverses the edge list, E, and accumulates the

number of graphlets incident upon each edge into a result

variable N . Before N is returned, it is divided by the number

of edges in the graphlet, because it is over-counted by that

many times. For instance, consider a graph that is a 4-node

clique (G4 in Figure 1). When an edge is processed, the clique

contributes one to the increase in N . Hence, after all edges

are processed N ’s value is 6, which should be divided by 6

(the number of edges in a 4-node clique) to get the correct

result (1).

The proposed exact algorithms mainly focus on optimizing

the work done by line 4 of Algorithm 1. As far as we know,

the algorithm proposed by Ahmed et al. [1] has the lowest

complexity and can be easily parallelized, and hence is used as

the baseline in this paper. The algorithm directly computes the

frequencies of G1 (triangle), G2 (wedge), G3 (rectangle), and

G4 (4-node clique) in Figure 1, and the counting of the other

4-node graphlets depends on those 4 frequencies. Therefore,

we only consider those directly counted graphlets.

Algorithm 1: Exact Graphlet Counting

input : G = (V,E), Graphlet pattern: Gk

output: N : the frequency of Gk.
1 begin
2 N ← 0;
3 for e in E do
4 T ← no. of graphlets incident upon e;
5 N ← N + T ;

6 N ← N

no. edges in Gk

;

B. Scalability Problem

We implemented the exact algorithm proposed in [1] using

OpenMP, which took 2 and 48 hours to count the frequencies

of G3 (rectangle) and G4 (clique) in graphs LiveJournal and

orkut, respectively, on one machine of a Blue Gene/Q cluster

(details in Section VII). The result demonstrates that although

the algorithm itself is efficient, the execution time can be

excessively large due to the large data size.

In light of existing work that uses distributed systems

to acclerate graph computation [9], [18], we used MPI to

parallelize the algorithm to run on multiple machines, with

vertices along with their adjacency lists randomly distributed.



We observe that using 16 machines only brings a 6.23X

speedup over the single-machine run (details in Section VII).

The source of the scalability issue is poor locality, which is

observed in multiple existing studies [9], [15]. Although a

more sophisticated graph partitioning approach may improve

locality [13], [33], the partitioning may incur unacceptable

overhead when the graph inputs are only available during

runtime.

We need to alleviate two bottlenecks to substantially im-

prove performance. The first bottleneck is absolute accuracy

which may be an overkill in many applications. For example,

graphlet counting can be used to compare networks [10],

in which a small error (e.g., 1%) may not affect the final

result. The second bottleneck is frequent remote accesses in a

distributed system environment due to the irregularity of the

input graph.

In the next two sections, we propose two approaches to

addressing these bottlenecks. We leverage a simple technique

from approximate computing to exploit the trade-off between

performance and accuracy. We take advantage of the error

tolerance and substantially reduce the number of remote

communications.

III. TASK SAMPLING WITH STATISTICAL ACCURACY

CONTROL

In this section, we apply task sampling to the exact graphlet

counting algorithm to perform the approximate computation.

We then employ sampling theory to determine how to sample

tasks to satisfy user-defined accuracy requirements. We show

a multi-phased sampling design, which can be easily imple-

mented to handle real-world workloads.

A. Task Sampling

We view each iteration of the for loop in Algorithm 1 as

a task, which computes the number of graphlets incident on

the processed edge. Similar to a well-known technique called

loop perforation [29], we can randomly skip some tasks (i.e.,

iterations) to reduce the execution time. In this paper, we call

this technique task sampling. Algorithm 2 shows a simple

way to modify Algorithm 1 to perform task sampling. The

highlighted statements (lines 4–6 and 10) denote the difference

from the exact algorithm. In each iteration, a random number

is generated between 0 and 1, which is compared with the

supplied sampling ratio P to determine if that task should be

processed. Line 10 adjusts the output to estimate the frequency

of the given graphlet pattern. The smaller P is, the more tasks

are skipped, and hence the more we can reduce execution time.

Theorem 1 below shows that Algorithm 2 results in an

unbiased estimate of the count of graphlet Gk in the graph.

Theorem 1. The expected value of N computed in Algorithm 2

is equal to the frequency of graphlet Gk.

Proof. Let Ti be the actual count of graphlet Gk associated

with edge ei processed in iteration i. Then the actual count

of graphlets is given by (
∑

i Ti)/|Gk|, where dividing by

Algorithm 2: Approximate Graphlet Counting with Task

Sampling

input : G = (V,E), Graphlet pattern Gk,
sampling ratio P

output: N : the estimated frequency of Gk.
1 begin
2 N ← 0;
3 for ei in E do

4 r ← uniform(0, 1);
5 if r > P then

6 continue;

7 Ti ← no. of graphlets incident upon ei;
8 N ← N + Ti;

9 N ← N

no. of edges in Gk

;

10 N ← N

P
;

|Gk|, denoting the number of edges in graphlet Gk, adjusts

for overcounting.

Let Xi be the random variable denoting the contribution of

edge ei to N in the algorithm. Then E[Xi] = (P ×Ti)+(1−
P ) × 0 = PTi. The expected number of graphlets counted

within the for loop is given by E[
∑

i Xi] =
∑

i E[Xi] =∑
i PTi = P

∑
i Ti, with the first step following from the

linearity of expectations. Dividing by |Gk| and P proves the

theorem.

Theorem 1 is interesting because it holds regardless of the

degree distribution or the topology of the graph. However,

in many real-world applications, an unbiased estimate is not

enough, because if the variance is large, the accuracy of one

particular run can be too poor to be useful. It is critical to

allow the user to provide an accuracy requirement (e.g., 1%

error bounds with 95% confidence interval), which should be

enforced by the application. Next we show how to leverage

sampling theory to reach this goal.

B. Multi-Phased Design for Error Control

Conceptually graphlet counting is performed by summing

up a list of L non-negative integers, each of which corresponds

to an edge and is equal to the number of graphlets incident

upon that edge. Essentially, algorithm 2 samples a sub-list,

whose sum is used to estimate the sum of the whole list. We

define the estimated sum as Sa and the sum of the original

list as Sr. The goal of error control is then to determine a

sampling ratio such that P (|Sa − Sr|/Sa ≤ errtgt) = 95%,

where errtgt is the target error and 95% is the confidence

interval.

Given a sampling ratio P and a sampled sub-list with P ,

we can compute the estimated variance of Sa [31]:

varest =
L× (1− P )× s2

P
(1)

where s is the variance of the sampled sub-list, and the

estimated error:

errest =

√
varest × zα/2

Sa
(2)





communications (memory accesses). The results, together with

Figure 2, show that remote communications may seriously

degrade the performance benefits from sampling.

B. Cost-Aware Task Sampling

The pitfall of naive random task sampling is that it does

not consider non-uniform costs of tasks. A task that processes

an inter-machine edge incurs greater cost compared with one

that processes an intra-machine edge. To improve scalability,

we propose a methodology for cost-aware task sampling that

crucially does not impact the uniform random nature of the

edge-dropping in Algorithm 2 assumed in Theorem 1.

Algorithm 3: Approximate Graphlet Counting with Cost-

Aware Task Sampling

input : G = (V,E), Graphlet pattern Gk, sampling ratio for
single-machine processing P , no. of machines
M(M > 1)

output: N : the estimated frequency of Gk in G.
1 begin
2 N ← 0;
3 P ′

←M ∗ P ;
4 for e in E do
5 r ← uniform(0, 1);
6 if e is an inter-machine edge then

7 if P ′
≤ 1 or r > M∗P−1

M−1
then

8 continue;

9 else
/* e is an intra-machine edge */

10 if r > P ′ then
11 continue;

12 T ← no. of graphlets incident upon e;
13 N ← N + T ;

14 N ← N

no. of edges in Gk

;

15 N ← N

P
;

Our methodology is described in Algorithm 3, whose main

idea is that intra-machine edges are preferentially sampled.

We describe how the algorithm works: first it assumes that

vertices and their adjacency lists are randomly assigned to the

M machines as noted earlier. Any edge (u, v) is then an intra-

machine edge with identical probability 1/M . Hence, when

the sampling probability P ≤ 1/M , the expected number

of intra-machine edges is larger than the expected number of

sampled edges. In this case, the algorithm skips all tasks that

process inter-machine edges (lines 7–8) and samples tasks that

process intra-machine edges with probability P ′(P ′ = M×P )
(lines 10–11). When P > 1/M(i.e., P ′ > 1), the algorithm

processes all intra-machine edges (lines 10–11) and samples a

portion of inter-machine edges (lines 6–8) determined by the

sampling ratio as M×P−1

M−1
.

Lemma 2. Algorithm 3 samples any edge with probability P .

Proof. Recall that any edge (u, v) is intra-machine with prob-

ability 1

M and inter-machine with probability M−1

M because of

the uniform random assignment of vertices to machines.

Case 1: 0 ≤ P ≤ 1

M . Intra-machine edges are sampled

with probability P ′ = PM and inter-machine edges with

probability 0. The probability that edge (u, v) is sampled is

given by ( 1

M × PM) + (M−1

M × 0) = P .

Case 2: 1

M < P ≤ 1. Intra-machine edges are sampled with

probability 1 and inter-machine edges with probability PM−1

M−1
.

The probability that edge (u, v) is sampled is given by ( 1

M ×
1) + (M−1

M × PM−1

M−1
), which is 1

M + PM−1

M = P .

Theorem 3. The expected value of N computed in Algorithm 3

is equal to the frequency of graphlet Gk.

Proof. The proof follows trivially from Lemma 2 and an

argument identical to that used in the proof of Theorem 1.

Given a specific partitioning of the input graph, the sampling

in Algorithm 3 is dependent. For example, assume that all the

three vertices of a triangle are placed on the same machine.

If two edges of the triangle are sampled, the third one has

a higher chance to be sampled. However, we stress that the

dependence does not affect the major result of Theorem 3,

because the random partitioning itself is part of the algorithm,

as shown in Lemma 2.

For triangle and wedge counting, the processing of an edge

only needs the adjacency lists of the two incident vertices. If

the task sampling ratio (P ) is smaller than 1/M , cost-aware

sampling successfully eliminates all remote communications.

In the section VII, we will show that for most graphs the

needed sampling ratio is indeed smaller than 1/M to satisfy

the accuracy requirement (1% error bounds with 95% confi-

dence interval). However, for four-node graphlets, to process

an edge (u, v) on a machine that owns u, the algorithm has

to retrieve all the adjacency lists of u’s neighbors. On average

Algorithm 3 can only reduce at most 1 remote retrieval, which

is only modest improvement. One possible way to further

reduce remote accesses is to consider the ratio of remote

neighbors for each vertex, which will be explored in the future.

V. VERTEX- VS. EDGE-CENTRIC TASK SAMPLING

The previous two sections described an edge-centric task

sampling approach, which samples tasks that process edges.

Some graph processing frameworks take a vertex-centric ap-

proach, in which a task processes a vertex. Algorithm 4 shows

that task sampling can be easily applied to sample vertex-

related tasks. Lines 5–6 control the sampling, and if a task is

skipped none of the edges incident on the vertex are processed.

The following theorem shows that, like the previous algo-

rithms, this algorithm produces an unbiased estimate.

Theorem 4. The expected value of N computed in Algorithm 4

is equal to the frequency of the graphlet Gk.

We omit the proof, which is similar to that of Theorem 1.

It may seem that vertex-centric sampling should perform as

well as edge-centric sampling, because with the same sampling

ratio both approaches sample roughly the same percentage of

tasks. However, recall that as described in Section III, given an

accuracy requirement, the needed sampling ratio is dependent

on the variance of the number of graphlets incident on an

edge. Similarly, the sampling ratio of vertex-centric sampling











IX. CONCLUSION

In this paper, we presented a framework named ApproxG

to apply an approximate computing technique, called task

sampling, to graphlet counting. We proposed simple, yet

practical approaches to slightly modify an exact algorithm to

perform approximate computation with controllable accuracy.

Those approaches can be easily implemented in both vertex-

centric and edge-centric processing models, but we demon-

strated that edge-centric sampling performs substantially better

than vertex-centric sampling. To scale the computation in a

distributed system, we proposed cost-aware task sampling,

which preferentially samples tasks that involve fewer remote

communications. The experiments on 11 real-world graphs

validated the effectiveness of the proposed approaches, which

showed the great potential of approximate computing for graph

computation.
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